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1 Introduction

L. Faddeev, N. Reshetikhin und L. Takhtadjian [RTF] introduced a construction to ob-
tain quantum deformations of coordinate rings of classical groups. General considerations
about this so called FRT-construction can be found for instance in [Ma],[Ta], [Ha], [Su]
and also in many textbooks on quantumgroups. Our approach differs from former ones
in the following three aspects:

First, we focus attention to the graded matric bialgebra which arises in the first step of
the construction. This means that we rather look at quantizations of appropriate closed
monoids instead of classical groups. Especially we look at the homogenous summands of
these graded bialgebras. These are coalgebras which can be defined in a dual way to cen-
tralizer algebras of subsets in an endomorphism ring. We therefore call them centralizer
coalgebras and investigate their relationship to the corresponding centralizer algebras.

Further, we work over arbitrary noetherian integral domains as base rings. This makes
sense since all known examples are allready welldefined over rings of integral Laurent poly-
nomials, i.e. Z[X,X−1] (in the indeterminant X). We will see that there are tremendous
differences to the theory over fields, especially concerning the comparison of centralizer
algebras and coalgebras. For instance the centralizer coalgebra may have R-torsion. We
present the following criterion for R-projectivity: This property holds if and only if the
centralizer algebra is stable under base changes. Furthermore, we will see that the latter
property is allways valid for centralizer coalgebras.

Finally, the FRT-construction in the ordinary form depends on exactly one endomorphism
which usually is a quantum Yang-Baxter operator in the applications. Here we give an-
other version of the FRT-construction which can be applied to sets of endomorphisms.
This generalization is neccessary to describe the coordinate rings of classical symplectic
and orthogonal monoids by use of an FRT-type construction. We demonstrate this in
the symplectic case, giving some improvements of results by S. Doty [Dt]. Furthermore,
applying our results on centralizer coalgebras we obtain an integral form for the sym-
plectic Schur algebra defined by S. Donkin in [Do2] without any use of the hyperalgebra
or Kostant Z-form. As an additional incredience we need a symplectic version of the
straightening formula for bideterminants the proof of which covers all of the last two
sections.

1E-Mail: seba@mathematik.uni-stuttgart.de
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2 Centralizer Coalgebras

Let R be a noetherian integral domain, V a free R-module with a fixed basis {v1, . . . , vn}.
Let ej

i denote the corresponding basis of matrix units for E := EndR(V ). The algebra
structure on E induces a coalgebra structure on the dual R-module E∗ := HomR(E , R).
On the dual basis elements the comultiplication ∆ and the counit ε are given by

∆(e∗i
j) =

n∑
k=1

e∗i
k ⊗ e∗k

j, ε(e∗i
j) = δij.

We will be engaged with epimorphic coalgebra images of E∗ since they correspond to
subalgebras of E . Consider the isomorphism ϑtr : E → E∗ of R-modules induced by the
matrix trace map tr : E → R or more precisely by the corresponding nondegenerated
bilinear form. Let A ⊆ E be an arbitrary subset and L(A) the R-linear span in E of all
commutators [ν, µ] = νµ − µν where ν runs through A and µ runs through E . We set
K(A) := ϑtr(L(A)) ⊆ E∗. If A consists of just one element ν we use abbreviations L(ν)
and K(ν) for L(A) and K(A). The proofs of the following lemmata are straightforward
and can be found in section 1.3 of [Oe].

Lemma 2.1 K(A) is a coideal in E∗ for each subset A ⊆ E.

If C is an arbitrary coalgebra such that V is a C-comodule with structure map τV : V →
V ⊗ C we denote the set of C-comodule endomorphisms by

EndC(V ) := {µ ∈ E| (µ⊗ idC) ◦ τV = τV ◦ µ}.

Clearly this is a subalgebra of E .

Lemma 2.2 Let C be a coalgebra together with an epimorphism π : E∗ → C. Then

µ ∈ EndC(V ) ⇐⇒ K(µ) ⊆ ker(π).

Corollary 2.3 Let M be a coideal in E∗ and µ, ν ∈ E. Then K(µ) ⊆M and K(ν) ⊆M
implies K(µν) ⊆M and K(νµ) ⊆M .

We now define the centralizer coalgebra of the subset A ⊆ E as

M(A) := E∗/K(A).

According to lemma 2.2 we have

A ⊆ EndM(A)(V ).

Furthermore M(A) is the largest epimorphic image of E∗ with this property. By the
corollary M(A) does not change if A is substituted by its algebraic span. Before going
deeper into the analysis of relationships between M(A) and the centralizer algebra

C(A) := EndA(V ) = {µ ∈ E| [µ, ν] = 0, for all ν ∈ A}

we give a presentation of M(A) by generators and relations, which is convenient for prac-
tical use.
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The residue classes of the basis elements e∗i
j with respect to any coideal in E∗ will allways

be denoted by xij where i, j ∈ n := {1, . . . , n}. If µ =
∑n

i,j=1 aije
j
i ∈ E is arbitrary we

write

µxij :=
n∑

k=1

aikxkj und xijµ :=
n∑

k=1

xikakj. (1)

Now, if N is a subset of E and A its algebraic span then M(A) is defined by the relations

µxij = xijµ for all µ ∈ N, i, j ∈ n. (2)

As consequences one has relations of the same form where µ runs through all of A.

3 Comparison Theorems

Remember the definition of the complement

U⊥ := {f ∈ W ∗ = HomR(W,R)| f(u) = 0 ∀u ∈ U}

of a submodule U in an R-module W and in the definition of the evaluation map

EvW : W → W ∗∗, given by EvW (x)(y) := y(x) x ∈ W, y ∈ W ∗

In W ∗∗∗ we have the following commutatvity rule

EvW ∗(U⊥) = EvW (U)⊥. (3)

Turning to our special situation we first note that tr(b[x, a]) = tr(x[a, b]) for all x, a, b ∈ E .
Since the bilinearform induced by tr is nondegenerated, it follows:

ϑtr([x, a])(b) = tr(b[x, a]) = 0 for all x ∈ E ⇐⇒ [a, b] = 0. (4)

The following fundamental lemma of this section is easy to prove now.

Lemma 3.1 We have K(A)⊥ = EvE(C(A)) and K(A)⊥
⊥

= EvE∗(C(A)⊥)

Proof: According to the definition EvE(b) ∈ K(A)⊥ if and only if EvE(b)(ϑtr([x, a])) =
ϑtr([x, a])(b) = 0 for all x ∈ E and a ∈ A. Applying (4) this is the case if and only if
[a, b] = 0 for all a ∈ A, thus if and only if b ∈ C(A). The second equation follows from
the first by use of equation (3). 2

Remember that the dual module C∗ = HomR(C,R) of a coalgebra C allways posseses the
structure of an algebra by use of the convolution product

µν := (µ⊗ ν) ◦∆ where µ, ν ∈ C∗.

Here, we have identified µ⊗ν with its image under the natural homomorphism C∗⊗C∗ →
(C ⊗ C)∗. Note that this construction is functorial. In the special case C = E∗ we obtain
an algebra structure on E∗∗. Furthermore it is easy to show that the evaluation map
EvE : E → E∗∗ is an isomorphism of algebras.
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Lemma 3.2 Let C be a coalgebra together with an epimorphism π : E∗ → C. Set K :=
ker(π). Then ρ := Ev−1

E ◦ π∗ : C∗ → E is a monomorphism of R-algebras and im(ρ) =
Ev−1

E (K⊥).

Proof: By functoriality the dual map π∗ : C∗ → E∗∗ is an algebra homomorphism.
Since HomR(−, R) is exact on the right, π∗ is injective. One easily shows im(π∗) = K⊥.
This completes the proof, since EvE is an algebra isomorphism as mentioned above. 2

Theorem 3.3 (1. Comparison Theorem) The centralizer algebras C(A) and the dual
of the centralizer coalgebra M(A)∗ are isomorphic to each other. An isomorphism is given
by ρ.

Proof: This follows immediately from lemma 3.1 and 3.2. 2

Now, let us compare the dual of C(A) with M(A). To this aim we consider the dual map

J∗ : E∗ → C(A)∗ of the inclusion J : C(A) ↪→ E . Because of EvE∗(U) ⊆ U⊥⊥ for arbitrary
submodules U and according to Lemma 3.1 we have

K(A) ⊆ Ev−1
E∗ (K(A)⊥

⊥
) = Ev−1

E∗ (EvE∗(C(A)⊥)) = C(A)⊥ = ker(J∗).

Therefore J∗ factors to an R-modul homomorphism

θ : M(A) → C(A)∗.

Lemma 3.4 The kernel of θ is precisely the torsion submodule of M(A)

Proof: From general results of commutative algebra (cf. [Oe] Anhang A 1.2) it follows

that the torsion submodule of M(A) coincides with Ev−1
E∗ (K(A)⊥

⊥
)/K(A). By the above

calculations this is just the kernel C(A)⊥/K(A) of θ. 2

This immediately implies

Corollary 3.5 (Criterion of Torsionfreeness) The following statements are equiva-
lent:

(a) M(A) is torsionfree

(b) K(A) = C(A)⊥

(c) θ is injective.

Remark 3.6 The map θ is surjective if and only if the extensiongroup Ext1
R(E/C(A), R)

is trivial, in particular if C(A) is a direct summand in E.

At the beginning of this section we have constructed an algebra structure on the dual
module of a coalgebra. Conversely we should obtain a coalgebra structure on the dual
of an algebra A. Whereas this is not possible in general, it can be done under certain
restrictions to the R-module structure of the algebra A. To be more precise, the natural
R-homomorphism from A∗ ⊗ A∗ into (A⊗ A)∗ must be an isomorphism. This is the
case if A is projective and finetely generated. Therefore, under this circumstances the
construction is allways possible and functorial, that is: duals of algebra maps become
coalgebra maps. Thus we obtain
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Theorem 3.7 (2. Comparison Theorem) Suppose the centralizer algebra C(A) of A
is a direct summand in E as an R-module. Then C(A)∗ can be turned into a coalgebra.
The map θ : M(A) → C(A)∗ is an epimorphism of coalgebras, whose kernel is just the
torsion submodule of M(A).

4 Change of Base Rings

Let S be another noetherian integral domain together with a homomorphism R → S of
rings. We will consider S as an R-algebra via this homomorphism. In this situation there
is a functor from the category of R-modules into the category of S-modules given by

W S := S ⊗R W und αS := idS ⊗ α : US → W S (5)

to each pair of R-moduls W and U and an R-homomorphism α : U → W . We will study
the behaviour of the construction of centralizer coalgebras under these functors. It will
turn out that the centralizer coalgebra behaves better than the centralizer algebra. To
start with let

ES := EndS(V S), ζS : ES → ES

where ζS is given by ζS(s⊗ e)(t⊗ v) := st⊗ e(v) for all s, t ∈ S, e ∈ EndR(V ), v ∈ V . Let
JA : A ↪→ E be the natural embedding of the subalgebra A ⊆ E and let

AS := im(ζS ◦ JA
S)

denote the image of AS in ES. Further there are natural homomorphisms

ηS : C(A)S → C(AS) = EndAS
(V S) ⊆ ES

on generators given in a similar way to ζS. Note, that both, ζS and ηS are homomorphisms
of algebras connected by the equation

JC(AS) ◦ ηS = ζS ◦ JC(A)
S.

Thus ηS is injective if and only if JC(A)
S is injective (J stands for the corresponding

embeddings). This may fail if C(A) is not a pure R-submodule in E . Further ηS may fail
to be surjective (see the example following theorem 4.3). C(A) is called stable under base
change if ηS is an isomorphism of for all choices for S. Now, in analogy to ηS we are going
to consider natural homomorphisms

µS : M(A)S →M(AS) = (ES)∗/K(AS)

We will show that they are isomorphisms independent on the choices for A, R and S. To
this claim we consider

χS := ζS
∗−1 ◦ ψE : E∗S → (ES)∗

where ψE : E∗S → ES∗ is the natural homomorphism given by ψE(s⊗ f)(t⊗ e) := stf(e)
on genorators with s, t ∈ S, f ∈ E∗ e ∈ W . It is easy to check that χS is a homomorphism
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of coalgebras if the coalgebra structure on E∗S is defined in a canonical way (for details
see [Oe] section 1.5). Further, the verification of the commutativity rule

χS ◦ ϑtr
S = ϑtrS ◦ ζS (6)

is straightforward, as well. Here ϑtrS : ES → (ES)∗ is the isomorphism induced by the
matrix trace map trS : ES → S. Setting

L(AS) :=< [ν, µ]|ν ∈ AS, µ ∈ ES >S−mod,

we obtain

im(ζS ◦ JL(A)
S) = L(AS),

since ζS is an isomorphism of S-algebras. By definition we have K(A)S = ϑtrS(L(A)S)
and im(JK(A)

S) = im(ϑtr
S ◦ JL(A)

S). Using (6) this yields

im(χS ◦ JK(A)
S) = K(AS). (7)

Here again, we have used the symbol J to indicate embeddings of R-submodules. Note
that in particular K := im(JK(A)

S) is a coideal in E∗S since χS is an isomorphism of

coalgebras and therefore M(A)S ∼= E∗S/K is a coalgebra. Finally, we are able to define the
natural homomorphism µS as the factorization of χS which exists by (7). We immediately
obtain

Theorem 4.1 (Change of Base Rings) For any noetherian integral domain S which
is an R-algebra and any R-subalgebra A of E there is a natural homomorphism

µS : S ⊗R M(A) →M(S ⊗R A)

which is an isomorphism of S-coalgebras.

This means that M(A) is stable under base changes for all choices of A and R. If the
R-algebra S is a field, it follows from theorem 3.3 and 4.1 that

dimS(C(AS)) = dimS(M(AS)∗) = dimS((M(A)S)
∗
) = dimS(M(A)S) (8)

Now, for a noetherian integral domain R it is known from commutative algebra that an
R-module W is projective if and only if the dimension of W S is independent on the field
S. Thus we obtain

Corollary 4.2 Let F be the field of fractions of R. Then M(A) is projective if and only
if dimS(C(AS)) = dimF (C(AF )) holds for each field S.

Theorem 4.3 (Criterion of Projectivity) The following statements are equivalent:

(a) The centralizer coalgebra M(A) ist projektiv.

(b) The centralizer algebra C(A) = EndA(V ) is stable under base changes.

(c) M(A) is torsionfree and C(A) a direct summand in E.
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Proof: First assume (a). Then the sequence

0 → K(A) → E∗ →M(A) → 0

is split and consequentely the same is true for

0 →M(A)∗ → E∗∗ → E∗∗/K(A)⊥ → 0.

Since EvE induces an isomorphism between E∗∗/K(A)⊥ and E/C(A) according to lemma
3.1 it follows that E/C(A) is projective, as well. Thus C(A) is a direct summand in E
proving (c).

Part (a) follows from (c) by theorem 3.7, since the dual of a projective module is projective
again. To verify (b) we therefore may assume both (a) and (c). Since C(A) is a direct
summand JC(A)

S is injective for all R-algebras S. Consequentely all ηS are injective (see
above). To show surjectivity note that the image im(ζS ◦ JC(A)

S) = im(JC(AS) ◦ ηS) of

C(A)S in ES must be a direct summand therein, since ζS is an isomorphism and im(JC(A)
S)

a direkt summand in ES. Therefore, to show that this submodule of ES coincides with
C(AS), it is enought to verify that both have the same rank (the dimension of the G-
tensored module over the field G of fractions on S). But these ranks must indeed be the
same as can be seen from the following calculations

dimG(C(A)G) = dimF (C(A)F ) = dimF (C(AF )) = dimG(C(AG)).

where the lefthandside equation holds by projectivity of C(A), the righthandside one by
corollary 4.2 and the one in the middle since ηF is an isomorphism by flatness of the field
F of fractions on R. This establishes (b).

Now assume (b). This implies that the map JC(A)
S induced by the embedding JC(A) is

injective for all S. By commutative algebra arguments one concludes that C(A) is a direct
summand in the R-free module E , in particular it is projective. Now, let S be a field.
Since ηS is an isomorphism we have

dimS(C(A)S) = dimS(C(AS)).

The lefthandside is independent of S by projectivity of C(A). Thus by corollary 4.2 M(A)
is projective yielding (a). 2

Example: Let R = Z and V = Z4. Further let

a :=


0 2 0 0
0 2 0 0
0 0 0 1
0 0 0 2

 ∈ E = EndZ(Z4)

and A :=< a > be the subalgebra in E generated by a. Each field can be considered as a
Z-algebra. For a field of characteristic different from 2 the minimum polynomial of aS is
t2− 2t, but in characteristic 2 it is t2. This means that the algebra AS is two dimensional
for each field S. It follows that A is a direct summand in E . But nethertheless M(A)
is not projective (free), because in the case of a field of characteristic different from 2
aS is diagonalisable and one calculates dimS(C(AS)) = 22 + 22 = 8, while in the case of
characteristic 2 we have dimS(C(AS)) = 9 gilt. Therefore M(A) can’t be projective in
view of corollary 4.2.
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5 FRT-Construction

The r fold tensor product of V is denoted by V ⊗r. Since it is a free R-module, as well,
we may apply all results of former sections to a situation where V is substituted by V ⊗r,
E by Er := EndR(V ⊗r) and E∗ by Er

∗ := HomR(Er, R). There are natural isomorphisms
between Er and E⊗r and between Er

∗ and E∗⊗r. We will omit them in our notation and
consider them as identity maps. Set V ⊗0 := E0 := R.

Suppose we are given a family A = (Ar)r∈N0 of R-algebras such that Ar ⊆ Er. According
to lemma 2.1 there is an associated family of coideals Kr in Er

∗.

Kr := K(Ar). (9)

By the above identification we consider T (E∗) :=
⊕

r∈N0
Er

∗ as the tensor algebra on the
R-module E∗. There is a unic coalgebra structure on this tensor algebra, extending the one
from E∗ and turning T (E∗) into a bialgebra. Furthermore the Er

∗ are subcoalgebras dual to
the algebras Er, i.e. the coalgebra structure on Er

∗ is the one considered above. Epimorphic
images of this bialgebra are called matric bialgebras (cf. [Ta]). Let us investigate under
what circumstances the coideal

I := ⊕r∈N0Kr (10)

becomes an ideal in T (E∗) and thus consequentely is a biideal. To this claim we consider
inclusion maps sr, tr : Er → Er+1 given by

sr(µ) = µ⊗ idV , tr(µ) = idV ⊗ µ, µ ∈ Er

and focus attention to a special situation, which is general enought for our applications.
We start with an arbitrary subset N ⊆ E2 and define a family A inductively beginning
with A0 := R, A1 := R · idV and A2 as the algebraic span of N in E2, than continuing by
the formula

Ar := 〈sr−1(Ar−1) + tr−1(Ar−1)〉Alg for r > 2.

We call this a by N induced family of subalgebras of Er.

Proposition 5.1 Let A be the family induced by a subset N ⊆ E2. Then the coideal I
defined in (10) is a homogenous biideal in T (E∗) generated by the coideal K2.

Proof: First we show that I is a homogenous ideal. To this claim take a ∈ Kr and
b ∈ Eu

∗. We have to show a ⊗ b ∈ Kr+u and b ⊗ a ∈ Kr+u. The choice of the element a
can be reduced to a generator a = ϑtr([µ, ν]) of the R-module Kr with µ ∈ Er and ν ∈ Ar.
Letting ν̂ := sr+u−1 ◦ sr+u−2 ◦ . . . ◦ sr(ν) = ν⊗ idV ⊗u ∈ Ar+u and µ̂ := µ⊗ b̄, where b̄ ∈ Eu

is the preimage of b under ϑtr one obtains

a⊗ b = ϑtr([µ, ν])⊗ b = ϑtr([µ̂, ν̂]) ∈ Kr+u.

Similary b⊗ a ∈ Kr+u and the first statement is established.

For the second part denote by J the homogenous ideal in T (E∗) generated by K2. Since
I is a homogenous ideal containing K2 we get J ⊆ I. For the reverse inclusion we show
Kr ⊆ J by induction on r. Clearly K0 = K1 = (0) and K2 are contained in J . Now
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suppose r > 2. Letting Jr := J ∩Er
∗ one obtains Jr = Jr−1⊗E∗+E∗⊗Jr−1. By induction

hypothesis we see Kr−1 = Jr−1. Therefore

Jr = Kr−1 ⊗ E∗ + E∗ ⊗Kr−1 = K(M)

where M := sr−1(Ar−1)+ tr−1(Ar−1) ⊆ Er. But since Ar is generated by M as an algebra
we finally see from corollary 2.3 Kr = K(Ar) = K(M) = Jr. 2

According to the proposition we may assign a graded matric bialgebra to each subset
N ⊆ E2 by

M(N) := T (E∗)/I (11)

whose homogenous summand are the centralizer coalgebras M(Ar). This bialgebra will
be called the FRT-construction corresponding to the subset N . The reader familiar with
the ordinary FRT-construction will recognize the latter one as the special case where N
consists of just one element β (use the description (12) below). In this case we write
M(β) := M(N). Usually in the applications this β is a quantum Yang-Baxter operator
leading to a representation of the Artin braid groups on the modules V ⊗r. In this situaton
the algebras Ar are just the images of the corresponding group algebras (over R) under
this representations.

An application where N must consist of two elements will be given in the next section.
Here the Ar are images of the Brauer centralizer algebras under Brauers representations
corresponding to the symplectic groups. The bialgebra M(N) will turn out to be the
coordinate ring of a certain symplectic monoid. It is a remarkable fact, that the second
operator is only needed in the classical situation, whereas in the quantum case it lies
in the algebraic span of the quantum Yang-Baxter operator (see [Oe], Bemerkung 2.5.1,
2.5.4). Thus, the ordinary FRT-construction behaves singular (in a certain sense) when
specializing the deformation parameter to 1, i.e. in the classical limit.

We close this section giving are more convenient describtion of M(N). We denote by
I(n, r) the set of maps from von r := {1, . . . , r} to n := {1, . . . , n} and call the elements
i ∈ I(n, r) multi-indices writing i = (i1, . . . , ir), where ij ∈ n for j ∈ r. The residue
classes of the multiplicative generators e∗i

j + I of M(N) where i, j ∈ n will be denoted by
xij. For pairs of multi-indices i, j ∈ I(n, r) we introduce the abbreviation

xij := xi1j1xi2j2 . . . xirjr .

Using the notation introduced in (1) we obtain a presentation of M(N) by generators
and relations given as follows

M(N) = 〈xij, i, j ∈ n| µxij = xijµ, i, j ∈ I(n, 2), µ ∈ N〉 . (12)

The verification of this formula follows from the second statement of proposition 5.1
together with (2).

6 Example: Symplectic Monoids

Let n = 2m be even. We will aply the FRT-construction to two endomorphisms β, γ ∈
E2 = E ⊗ E . In order to define them we have to introduce some notation. First consider
the involution i′ := n− i+ 1 on n, that is
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(1′, 2′, . . . , n′) = (n, n− 1, . . . , 1).

Further set εi := 1 if i ≤ m and εi := −1 if i > m and define

β :=
∑
i,j∈n

ej
i ⊗ ei

j

γ :=
∑
i,j∈n

εiεje
j′

i ⊗ ej
i′ .

The first endomorphism is just the flip operator on V ⊗ V , whereas the second is an
integer multiple of a projection map whose kernel is just the kernel of the linear form
on V ⊗ V corresponding to the canonical skew bilinearform on V (see below) and whose
image is the one dimensional span of a skew bivector. Our object of interest will be the
FRT-construction

As
R(n) := M({β, γ}).

According to the preceeding section it is a graded matric bialgebra whose homogenous
summands

As
R(n, r) := M(Ar)

are the centralizer coalgebras of algebras Ar which are generated by endomorphisms

βi := idV ⊗i−1 ⊗ β ⊗ idV ⊗r−i−1 ,∈ Er

γi := idV ⊗i−1 ⊗ γ ⊗ idV ⊗r−i−1 ∈ Er

for i = 1, . . . , r−1. Using the notation of [We] the Brauer centralizer algebra Dr(x) (x an
element in R) is generated by symbols gi and ei for i = 1, . . . , r − 1 and the assignment
gi 7→ βi and ei 7→ γi defines a representation of Dr(−n) on V ⊗r. Thus Ar is just the image
of Dr(−n) under this representation, in H. Wenzl’s notation from [We]: Ar = Br(Sp(n)).
R. Brauer showed in [Br] that this is just the centralizer algebra of the symplectic group
SpC(n) acting on V ⊗r if R = C. One of our aims is to generalize this to the case of an
arbitrary algebraically closed field K instead of C.

Another problem, connected with the former, is to show that the centralizer algebra
C(Ar) of Ar which will turn out to be the symplectic Schur algebra S0(n, r) defined by S.
Donkin in [Do2] is stabel under base changes. In view of theorem 4.3 this is equivalent
to the projectivity of the coalgebra As

R(n, r) as an R-module. For this purpose we are
going to construct a basis for the latter one. The procedure follows [Oe] where the more
general quantum case is treated. But it will become more transparent in the much simpler
classical case. First note that there is an epimorphism of graded bialgebras from

AR(n) := R[x11, x12, . . . , xnn]

to As
R(n) leaving the symbols xij fixed (we use xij as symbols for residue classes of e∗i

j

in all cases of matric bialgebras). For AR(n) is just the FRT-construction M(β) where
the relations coming from the endomorphism γ are omitted. This is because xi2j1xi1j2 =
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βxij = xijβ = xi1j2xi2j1 just give the ordinary commutativity relations. The kernel of
this bialgebra epimorphism is the ideal in AR(n) which is generated by the polynomials
γxij = xijγ where i, j ∈ I(n, 2). To write down these polynomials explicitely let us fix
some notation:

fij :=
n∑

k=1

εkxikxjk′ , f̄ij :=
n∑

k=1

εkxkixk′j ∈ AR(n, 2).

Setting i = (i, j) und j = (k, l) we obtain

γxij =

{
εj f̄kl i = j′

0 i 6= j′
und xijγ =

{
εlfij k = l′

0 k 6= l′

Therefore we have

As
R(n) = AR(n)/F (13)

where F is the ideal in AR(n) generated by the set

F := {fij, f̄ij, fll′ − f̄kk′| 1 ≤ i < j ≤ n, i 6= j′, 1 ≤ l ≤ k ≤ m}. (14)

If R = K is an algebraically closed field we can interpret this in terms of algebraic
geometry, i.e. we can look at the vanishing set of F in the monoid MK(n) of n × n-
matrices. It is easy to see that this is just the closed submonoid

SpMK(n) := {A ∈ MK(n)| ∃ d(A) ∈ K, AtJA = AJAt = d(A)J}

in MK(n) called the symplectic monoid by S. Doty [Dt] and which has been considered
by D.J. Grigor’ev [Gg] first. Here J is the Gram-matrix of the canonical skew bilinear
form, that is J = (Jij)i,j∈n where Jij := εiδij′ . The function d : SpMK(n) → K is called
the coefficient of dilation. It is neccesarily a regular function on SpMK(n) and allready
well defined in As

K(n), explicitely:

d = εkfkk′ = εkf̄kk′ ∈ As
R(n, 2). (15)

Note that this is independet on k ∈ n by the relations in As
K(n). Furthermore d is a

grouplike element of this bialgebra (cf. [Oe] 2.1.1). The set GLK(n)∩SpMK(n) of invert-
ible elements in SpMK(n) is precisely the group GSpK(n) of symplectic similitudes. S.
Doty showed in [Dt] that SpMK(n) infact coincides with the Zariski-closure of GSpK(n)
in MK(n). We will obtain this as an easy consequence of the results presented below.

To write down a basis for As
R(n, r) we need some combinatorics. The set of partitions

of r is denoted by Λ+(r). It contains subsets Λ+(l, r) which consist of partitions having
not more than l parts. We write partitions as l-tuples λ := (λ1, λ2, . . . , λl) of nonnegative
integers λi in descending order λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 0 such that λ1 + . . . + λl = r. To
each partition one associates a Young-diagram reading row lenghts out of the components
λi. For example
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is associated to λ = (3, 2, 2, 1) ∈ Λ+(4, 8). The column lenghts of the diagram lead to
another partition λ′ ∈ Λ+(λ1, r) called the dual of the partition λ, i.e. λ′i := |{j| λj ≥
i}|. Let Sr denote the symmetric group on r symbols and Sλ the standard Young sub-
group of Sr corresponding to the partition λ. This is the subgroup fixing the subsets
{1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . of r. In the above example λ = (3, 2, 2, 1) the stan-
dard Young subgroup of S8 corresponding to the dual partition λ′ fixes {1, 2, 3, 4}, {5, 6, 7}
und {8}.

To each partition λ ∈ Λ+(r) and a pair of multi-indices i, j ∈ I(n, r) one defines a
bideterminant T λ(i : j) ∈ AR(n, r) by

T λ(i : j) :=
∑

w∈Sλ′

sign(w)xi(jw) =
∑

w∈Sλ′

sign(w)x(iw)j.

where iw := (iw(1), iw(2), . . . , iw(r)). These are products of minor determinants, one factor
for each column, the size of which correspond to the lenght of the column. By (13) they
can be interpreted as elements of As

R(n, r), as well. We whish to write down a basis of
the latter R-module consisting of such bideterminant. Since they are to large in number
one needs a criterion to single out the right ones. This can be done using λ-tableaux.
These are constructed from the diagram of λ by inserting the components of a multi-index
column by column into the boxes. In the above example:

T λ
i :=

i1 i5 i8
i2 i6
i3 i7
i4

.

We put a new order � on the set n, namely 1′ � 1 � 2′ � 2 � . . . � m′ � m. A
multi-index i is called λ-column standard if the entries in T λ

i are strictly increasing down
columns according to this order. It is called λ-row standard if the entries in T λ

i are weakly
increasing along rows and λ-standard if it is both at the same time. We write Iλ to denote
the subset of I(n, r) consisting of all multi-indices being λ-standard. Such a multi-index
i ∈ Iλ is called λ-symplectic standard if for each index i ∈ m the occurences of i as well as i′

in T λ
i is limitted to the first i rows. The corresponding subset of Iλ will be denoted by Isym

λ .

The notion of symplectic standard tableaux traces back to R.C. King [Ki] and it has ap-
peard in a lot of work concerning symplectic groups and their representation theory (for
details see [Do3]).

It is well known from invariant theory (cf. [Mr], section 2.5) that the collection of all
bideterminants T λ(i : j) where λ runs through Λ+(n, r) and i, j run through Iλ form a
basis of AR(n, r). Similarily we will prove in the next section

Theorem 6.1 The R-module As
R(n, r) has a basis given by

Br := {dlT λ(i : j)| 0 ≤ l ≤ r

2
, λ ∈ Λ+(m, r − 2l), i, j ∈ Isym

λ }.

Before proving this let us have a look at some consequences. The first one generalizes
theorem 9.5 (a) of [Dt] avoiding the restriction to characteristic zero. Furthermore, it
contains corollary 5.5 (f) of that paper for allgebraically closed fields.
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Corollary 6.2 Let K be an algebraically close field. Then As
K(n) coincides with the coor-

dinatering of the Zariski-closure GSpK(n) of GSpK(n) in MK(n). In particular SpMK(n)
is identical to GSpK(n). Therefore, a complete set of generators of the vanishing ideal of
GSpK(n) in AK(n) is given by the set F (defined in equation 14).

Proof: Let A0(n) be the coordinate ring of GSpK(n) and A0(n, r) its r-th homogenous
summand. In [Do2] the symplectic Schur algebra S0(n, r) is defined as the dual algebra
to the coalgebra A0(n, r). The dimension of the latter one is given by Weyl’s character
formula and therefore independent on the field K (cf. [Do2] p. 77). On the other hand
there is an epimorphism of graded bialgebras from As

K(n) to A0(n) since GSpK(n) is
closed in SpMK(n) and the latter one has been defined as the vanishing set of the ideal
F by which As

K(n) is defined. But by our basis theorem 6.1 the dimension of As
K(n, r)

is independent on the field K, as well. Thus, the proof can be finished looking at the
case K = C and using Doty’s theorem 9.5 (a) or alternately by a direct calculation of
|Br| = dimC((A0(n, r))) (see proposition 7.1 below). 2

By theorem 4.1 we have isomorphisms

K ⊗Z A
s
Z(n, r) ∼= As

K(n, r), K ⊗Z A
s
Z(n) ∼= As

K(n).

Since As
K(n) has been recognized to be the coordinate ring of SpMK(n) = GSpK(n) we

may interpret the spectrum of the ring As
Z(n) as an integral monoid scheme SpMZ(n).

Accordingly, an integral form for the symplectic Schur algebra can be obtained as the
dual algebra

Ss
Z(n, r) := HomZ(As

Z(n, r),Z)

of its homogenous summands. By theorem 4.3 and 6.1 this is stable under base canges,
that is, tensoring by a field K gives the symplectic Schur algebra Ss

K(n, r) = S0(n, r) =
HomK(As

K(n, r), K) defined over that field. An integral form for symplectic Schur algebras
exists, as well, by S. Donkin’s work on generalized Schur algebras (see [Do2]). But his
approach is quite different using the theory of Lie algebras in particular the Kostant Z-
form. In both cases the notion of symplectic Schur algebras can be extended to more
general integral domains R instead of Z leading to identical concepts. In our case this is
Ss

R(n, r) := HomR(As
R(n, r), R). By theorem 3.3 we conclude

Corollary 6.3 Over any noetherian integral domain R the symplectic Schur algebra is
isomorphic to the centralizer algebra of the Brauer algebra Dr(−n).

For a field of characteristic zero this has been proved by S. Doty, too ([Dt] corollary 9.3.
(c)). It should be remarked, that the basis dual to Br together with the anti-involution
defined by matrix transposition give a cell datum for the symplectic Schur algebra in the
sense of J. Graham and G. Lehrer (cf. [Oe], 4.2.5). Thus, its representation theory can
be developed easily to the extent of the treatment of cellular algebras in [GL].

7 Proof of theorem 6.1

Let us first reduce to showing that Br is a set of generators for the R-module As
R(n, r).

This can be done by the following proposition where notations from the proof of corollary
6.2 are used.
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Proposition 7.1 |Br| = dimC(A0(n, r)).

Proof: We use [Do2] p. 74 ff. First the reader may check that our definition of A0(n)
and A0(n, r) is identical to the one given there. According to [Do2] and 2.2c in [Do1] we
have

dimC(A0(n, r)) =
∑

λ∈π0(n,r)

dimC(Y0(λ))2 (16)

where Y0(λ) := Ind
GSpC(n)
B0

(Cλ) is the irreducible GSpC(n) module induced from the linear
character Cλ of the Borel subgroup B0 (notations taken from [Do2]). Here λ runs through
the set π0(n, r) of dominant weights corresponding to the irreducibles occuring in V ⊗r. If
T0 denotes the maximal torus of GSpC(n) we may consider the weights λ as the grouplike
elements in its coordinate ring. More precisely λ ∈ π0(n, r) is of the form

λ = xµ1

11x
µ2

22 . . . x
µm
mmd

l

as can be seen from the argumentation in [Do2]. Here, µ := (µ1, . . . , µm) ∈ Λ+(m, r− 2l)
is a partition of r− 2l in not more than m parts and 0 ≤ l ≤ r

2
an integer. Restricting to

the symplectic group SpC(n) we have to set the coefficient of dilation d equal to 1. Thus
the restriction of λ to the maximal torus of SpC(n) is just the dominant weight

λ̄ = xµ1

11x
µ2

22 . . . x
µm
mm

for the symplectic group itself. Furthermore, it is easy to show that restricting the
GSpC(n)-module structure of Y0(λ) to the symplectic group gives the module Ȳ (λ̄) :=

Ind
SpC(n)

B̄
(Cλ̄) induced from the linear character Cλ̄ of the Borel subgroup B̄ = B0∩SpC(n)

of SpC(n) (for details see [Oe], 3.3.3). But the dimension of the latter one is known to be
the cardinality of Isym

µ (see [Do3] theorem 2.3 b for instance). Thus, we obtain

dimC(A0(n, r)) =
∑

0≤l≤ r
2

∑
µ∈Λ+(m,r−2l)

|Isym
µ |2 = |Br|.

2

Observe that by theorem 4.1 the proof of 6.1 can be reduced to the case R = Z, since the
definition of bideterminants over R and Z respectively commutes with the isomorphism
µR when R is considered as a Z-algebra. Now, suppose we have shown that Br generates
As

Z(n, r) ⊆ As
C(n, r) as a Z-module. Then the image of Br in A0(n, r) under the epimor-

phism considered in the proof of 6.2 is a set of generators, too. By the above proposition
it must be a basis of A0(n, r). Consequentely, there can’t be any relations ammong the
elements of Br, especially none with integer coefficients, giving the desired result.

The proof that Br is indeed a set of generators will follow from a symplectic version of
the famous straightening formula. For convenience of the reader we will first state the
algorithm leading to the classical straightening formula. To do so, we put an order on the
set Λ+(r) of partitions of r writing λ < µ if the dual λ′ occurs before the dual µ′ in the
lexicographical order. In this order the fundamental weight ωr := (1, 1, . . . , 1) ∈ Λ+(r, r)
is the largest element, whereas αr := (r) ∈ Λ+(1, r) is the smallest one. We abbreviate
A := AR(n, r) and define A(> λ) resp. A(≥ λ) to be the R-linear span in A of all
bideterminants T µ(i : j) such that µ > λ resp. µ ≥ λ. For λ = ωr we set A(> ωr) := 0.
Clearly A = A(≥ αr).
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Proposition 7.2 (Classical Straightening Algorithm) Let λ ∈ Λ+(r) be a partition
of r and j ∈ I(n, r)\Iλ. Then to each k ∈ I(n, r) satisfying k = jw 2 for some w ∈ Sr

and k � j there is an element ajk ∈ R such that in A the following congruence relation
holds for all i ∈ I(n, r):

T λ(i : j) ≡
∑
k�j

ajkT
λ(i : k) mod A(> λ).

Here, the order on I(n, r) is the lexicographical one according to the given order on n, in
our case �. A proof of the proposition can be found for example in [Mr], 2.5.7.

Let us now state the symplectic analogon. First consider the algebra

Ash
R (n) := As

R(n)/ 〈d〉

where 〈d〉 is the ideal in As
R(n) generated by the coefficient of dilation. It is graded since

d is a homogenous element but not a bialgebra because an augmentation map is missing.
In fact, it turns out that (in the case where R = K is an algebraically closed field) it
is the coordinate ring of the semigroup SpHK(n) := SpMK(n)\GSpK(n) of noninvertible
elements in the symplectic monoid (see remark 7.5). Let us abbreviate its submodule of
homogenous elements of degree r by A′ := Ash

R (n, r) and define A′(> λ) and A′(≥ λ) in the
same manner as above. Further, define a map f : I(n, r) → Nm

0 by f(i) = (a1, . . . , am),
where

al := |{j ∈ r| ij = l or ij = l′}|,

and order Nm
0 writing (a1, . . . , am) < (b1, . . . , bm) if and only if (bm, bm−1, . . . , b1) appears

before (am, am−1, . . . , a1) in the lexicographical order. Next, we obtain an order � on
Nm

0 × I(n, r) in a lexicographical way, as well:

(a, i) � (b, j) :⇐⇒ a < b or (a = b and i � j).

Finally, this gives a new order � on I(n, r) via the embedding I(n, r) ↪→ Nm
0 × I(n, r)

given by i 7→ (f(i), i). Now we are able to state the symplectic straightening algorithm:

Proposition 7.3 (Symplectic Straightening Algorithm) Let λ ∈ Λ+(r) be a parti-
tion of r and j ∈ I(n, r)\Isym

λ . Then to each k ∈ I(n, r) satisfying k�j there is an element
ajk ∈ R such that in A′ the following congruence relation holds for all i ∈ I(n, r):

T λ(i : j) ≡
∑
k�j

ajkT
λ(i : k) mod A′(> λ).

Before proving this, let us deduces that Br is a set of generators for As
R(n, r). First note

that multiplication by the coefficient of dilation d leads to an exact sequence for r > 1

As
R(n, r − 2)

·d→ As
R(n, r) → Ash

R (n, r) → 0.

Therefore, by induction on r we can reduce to showing that

2this is missing in the statement of 2.5.7 in [Mr] but can be seen directly from the proof given there



16 Sebastian Oehms

{T λ(i : j)| λ ∈ Λ+(m, r), i, j ∈ Isym
λ }

is a set of generators for A′ = Ash
R (n, r). For this claim it is enought to show that

{T λ(i : j)| i, j ∈ Isym
λ }

is a set of generators of A′(≥ λ)/A′(> λ) for each partition λ. This can be deduced from
the straightening algorithm 7.3: Since I(n, r) is a finite set, the elemination of multi-
indices j not being λ-symplectic standard in an expression T λ(i : j) must terminate. This
gives the straightening formula concerning the righthandside argument of T λ(i : j):

Corollary 7.4 (Symplectic Straightening Formula) Let λ ∈ Λ+(r) be a partition of
r and j ∈ I(n, r). Then, to each k ∈ Isym

λ there is an element ajk ∈ R, such that in A′ we
have for all i ∈ I(n, r):

T λ(i : j) ≡
∑

k∈Isym
λ

ajkT
λ(i : k) mod A′(> λ).

Now, there is an algebra automorphism θ on AR(n) induced by matrix transposition and
given by θ(xij) = xji on generators. Of course it is an anti-automorphism of coalgebras.
It can be readily seen that θ(F) = F and θ(d) = d. Therefore, it factors to an auto-
morphism of Ash

R (n) which will be denoted by the same symbol. From the definition of
bideterminants we see θ(T λ(i : j)) = T λ(j : i).

Applying θ to the congruence relation in 7.4 we see that a non λ-symplectic standard
entry i on the lefthandside entry of a bideterminant can be eleminated, too, not effecting
the righthandside entry. Thus, it must be possible to write T λ(i : j) as a sum of bideter-
minants T λ(k : l) modulo A′(> λ) where k, l ∈ Isym

λ . Therefore, the proof of theorem 6.1
is finished as soon as proposition 7.3 is established.

Remark 7.5 A symplectic straightening formula similar to 7.4 can be obtained as a spe-
cial case of a theorem by de Concini ([Co], theorem 2.4) where m = 2r (in the notation
taken from there). The algebra denoted A in that paper becomes the coordinate ring of
the semigroup denoted SpHK(n) above. But, note that this result is not strong enough for
our purpose since we don’t know wether A = Ash

K (n) or not. On the other hand, the latter
identity follows from theorem 6.1 in a similar way to corollary 6.2 using theorem 3.6 of
[Co].

Also, the symplectic straightening formula is related to the treatment of symplectic Schur-
modules in [Do3] and [Ia], section 6, as can be see from the proof of lemma 8.1 below.
Concerning the latter paper it should be noted that the algebra Asp

K (n) defined there as
the coordinate ring of the symplectic group itself is only filtered by

∑r
t=0A

sp
K (n, t) but not

graded by Asp
K (n, r). In fact, it can be deduced from the above remark that Ash

K (n) is the
corresponding graded algebra, that is Asp

K (n, r) = Ash
K (n, r) as K-vector spaces.
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8 Proof of proposition 7.3

First, some considerations about the exterior algebra∧
R
(n) := T (V )/ 〈vi ⊗ vj + vj ⊗ vi, vk ⊗ vk; i, j, k ∈ n〉

are needed. It is easy to see and well known that this graded R-algebra is a comodule
algebra for the bialgebra AR(n), i.e. it is an AR(n)-comodule such that multiplication
is a morphism of comodules. Infact, the homogenous summands

∧
R(n, r) of

∧
R(n) are

comodules for the coalgebras AR(n, r). Since As
R(n) is an epimorphic image of AR(n) the

exterior algebra is a comodule algebra for the latter one, as well.

As usual we write vi ∧ vj for the residue class of vi ⊗ vj in
∧

R(n) and denote arbitrary
multiplications by ∧, too. For a subset I := {i1, . . . , ir} ⊆ n ordered i1 � i2 � . . . � ir
by the given order � on n (called an ordered subset in the sequel) we use the abbriviation
vI := vi1 ∧ vi2 ∧ . . .∧ vir . The elements vI give a basis of

∧
R(n) if I ranges over all subsets

of n. A basis for
∧

R(n, r) is obtained when I ranges over all subsets of cardinality r, the
collection of which will be denoted by P (n, r). The comodule structure of

∧
R(n, r) can be

described in a simple way using bideterminants for the partition ωr := (1r) = (1, 1, . . . , 1).
These are just the usual r × r-minor determinants. Denoting the structure map by τ∧ :∧

R(n) →
∧

R(n) ⊗ AR(n) (we will use the same symbol in the case As
R(n) later on) we

explicitely have

τ∧(vJ) =
∑

I∈P (n,r)

vI ⊗ T ωr(i : j) (17)

where i = (i1, . . . , ir) and j = (j1, . . . , jr) are the multi-indices corresponding to the
ordered subsets I := {i1, . . . , ir} and J = {j1, . . . , jr}, respectively. Define dk := vk′ ∧ vk

and dK := dk1 ∧dk2 ∧ . . .∧dka for a subset K := {k1, . . . , ka} ⊆ m of cardinality a. Again,
we write P (m, a) for the collection of all such subsets K. Note that the dk are in the
center of the exterior algebra and in particular commute with each other. Thus dK is
defined independent on the order of the elements of K. Set

Da :=
∑

K∈P (m,a)

dK

and let N be the ideal in
∧

R(n) generated by the elements D1, D2, . . . , Dm. One crucial
point in the proof of proposition 7.3 is to show that the elementsDa are invariant under the
bialgebra As

R(n). But first, let us establish a prototype straightening algorithm inside the
graded algebra

∧s
R(n) with respect to the set Isym

ωr
. We call an ordered subset I ∈ P (n, r)

symplectic if the corresponding multi-index i is ωr-symplectic standard.

Lemma 8.1 Let I ∈ P (n, r) be non symplectic. Then, to each J ∈ P (n, r) such that the
inequallity f(j) < f(i) holds for corresponding multi-indices i and j there is aIJ ∈ R, such
that in

∧
R(n) the following congruence relation holds:

vI ≡
∑

J∈P (n,r), f(j)<f(i)

aIJvJ mod N
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Proof: We follow [Do3]. Clearly, we may reduce to the case R = Z since
∧

R(n) ∼=
R⊗Z

∧
Z(n) and the canonical isomorphism therein respects the basis elements vI and the

ideal N . If K ⊆ m then in
∧

R(n) we calculate as in [Do3], 2.2.

(
∑
k∈K

dk)
a

= a!
∑

L∈P (m,a), L⊆K

dL (18)

In the case K = m this implies Da
1 = a!Da. Set x :=

∑
k∈K dk and y := D1−x. It follows

from (18) that the equation

xa = (−1)aya +
a∑

b=1

(
a

b

)
(−y)a−bb!Db

is divisible by a!. Setting XK
a :=

∑
L∈P (m,a), L⊆K dL and M := m\K this yields

XK
a = (−1)aXM

a +
a∑

b=1

(−1)a−bXM
a−bDb

since
∧

Z(n) is a free Z-module. We obtain XK
a ≡ (−1)aXM

a modulo the ideal N and in
the special case K ∈ P (m, a)

dK ≡ (−1)a
∑

L∈P (m,a), L∩K=∅

dL mod N. (19)

The proof can be finished now in a similar way to the proof of the Symplectic Carter-
Lusztig Lemma in [Do3]: Since I is not symplectic there is a number s ∈ r such that
I = {i1, . . . , ir} contains an element is satisfying is < s if is ≤ m or i′s < s if is > m.
We assume s to be as small as possible with this property. Let k, l ∈ m be the unique
numbers with {k, k′} = {is, i′s} and {l, l′} = {is−1, i

′
s−1}. By minimality of s we have

l ≥ s− 1. On the other hand, is−1 � is implies l ≤ k. This gives s− 1 ≤ l ≤ k < s, that
is k = l and s = k + 1.

Now let Is := {i1, . . . , is} be the ordered subset of the first s entries of I and K be the set
of all p ∈ m such that both p and p′ are contained in Is. Setting K ′ := {p′| p ∈ K} and
H := I\(K ∪K ′) we obtain vI = vHdK since the elements dp are in the center of

∧
Z(n).

Therefore, by equation (19) it remains to show that for all subsets L ∈ P (m, a) which
do not intersect K we have f(j) < f(i) where j is the multi-index corresponding to the
ordered set J := H ∪ L ∪ L′. Since vJ = vHdL = 0 if L or L′ := {p′| p ∈ L} contains an
element of H we further may assume H ∩L = H ∩L′ = ∅. Now, suppose L ⊆ k. Let G be
the set of all g ∈ k\K such that g or g′ lies in Is. Since Is\(K ∪K ′) ⊆ H the intersection
of L and G is empty, as well. This gives a contradiction

k + 1 = s = |Is| = 2|K|+ |G| = |K|+ |L|+ |G| = |K ∪ L ∪G| ≤ k

for K,L and G are disjoint subsets of k by assumption on L. Thus, the largest element
t of L must be greater than k, whereas all elements of K are smaller or equal to k. If
f(i) = (b1, . . . , bm) and f(j) = (a1, . . . , am) it follows that at = bt + 2 > bt and al = bl for
t < l ≤ m. By definition of our order on Nm

0 this means f(j) < f(i) completing the proof.
2

As mentioned before, the crucial point in the proof of proposition 7.3 is contained in the
following
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Proposition 8.2 The elements Da are invariant under the bialgebra As
R(n). The corre-

sponding grouplike elements in As
R(n) are the a-th powers of the coefficient of dilation,

more precisely:

τ∧(Da) = Da ⊗ da ∈
∧

R
(n, 2a)⊗ As

R(n, 2a)

Proof: In the case a = 1 this easily follows from (15) using the relations given by
the set F defined in (14). If we could divide by a!, we would be able to finish the proof
right now using Da

1 = a!Da and the fact that multiplication is a morphism of As
R(n)-

comodules. But, as this is not possible in general (note, that we don’t know if As
Z(n) is a

free Z-module, yet) we have to proceed in another way. We set r = 2a and

Gi :=
∑

L∈P (m,a)

T ωr(i : j(L))

where j(L) is the multi-index corresponding to the ordered subset L ∪ L′ = {l, l′| l ∈ L}
of n. If i is the multi-index corresponding to the ordered subset I ∈ P (n, r) we also write
GI = Gi. By (17) we have

τ∧(Da) =
∑

I∈P (n,r)

vI ⊗GI .

Therefore, it remains to show that GI = da if there is a K ∈ P (m, a) such that I = K∪K ′

and GI = 0 otherwise.

If i = (i1, . . . , ir) is a multi-index and l ≤ a we set il := (i2l−1, i2l) ∈ I(n, 2). Since the
result is clear in the case a = 1 we know

Gil =


0 i′2l−1 6= i2l

d i′2l−1 = i2l ≤ m
−d i′2l−1 = i2l > m

.

Therefore, the element G′
i :=

∏a
l=1Gil is zero or ±da depending on i. Let us investigate

this in more detail. If σ ∈ Sr denotes the involution defined by σ(2l−1) = 2l, σ(2l) = 2l−1
for l ∈ a and W the centralizer of σ in Sr, then clearly G′

i = 0 if and only if G′
iw = 0 for

all w ∈ W . The group W is isomorphic to the Weyl group of type Ca. It is a semi direct
product of the normal subgroup W 1 consisting of all π ∈ W which permute neighboured
pairs together with W 0, the subgroup generated by the transpositions (2l−1, 2l) for l ∈ a.
W 1 is isomorphic to Sa, whereas the group W 0 can be identified with (Z/2Z)a. Choose a
set H of left coset representatives for W in Sr the element representing W itsself being idr.

Now, if i corresponds to an ordered set I = K ∪K ′ for some K ∈ P (a, n) the inequality
G′

iπ 6= 0 holds for a permutation π ∈ Sr if and only if π ∈ W . Thus, for h ∈ H we have
G′

ih = 0 if h 6= id and G′
i = da. If there is no K such that I = K ∪ K ′ one clearly has

G′
ih = 0 for al h ∈ H. Therefore, the proof is finished as soon as we have shown

Gi =
∑
h∈H

sign(h)G′
ih. (20)

To this claim let µ := (a, a) ∈ Λ+(2, r) be the partition of r whose diagram consists of
two rows of lenght a. To a multi-index l = (l1, l2, . . . , la) ∈ I(m, a) another multi-index
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j(l) := (l′1, l1, l
′
2, l2, . . . , l

′
a, la) ∈ I(n, r) can be associated. Using this notation and reading

T µ(i : j(l)) as a product of a 2× 2-determinants we obtain the formula

G′
i =

∑
l∈I(m,a)

T µ(i : j(l)) ∈ As
R(n, r).

On the other hand, using Laplace Duality (see for example [Mr] 2.5.1) we calculate

T ωr(i : j) =
∑

h∈H, π∈W 1

sign(h)T µ(ihπ : j) =
∑
h∈H

sign(h)
∑

π∈W 1

T µ(ih : jπ). (21)

Therein, note that W 0 is precisely the column stabilizer of the basic tableaux T µ
b , whereas

the column stabilizer of T ωr
b is all of Sr (here b := (1′, 1, 2′, 2, . . . , a′, a)). Also, note that

HW 1 is a set of left coset representatives of W 0 and that all permutations of W 1 are even.
Furthermore, in the righthand side equation we have used the commutativity between the
2 × 2-determinant factors of T µ(ihπ : j) = T µ(ih : jπ−1). Now, the proof of (20) can be
reduced to the verification of∑

L∈P (m,r)

∑
π∈W 1

∑
h∈H

sign(h)T µ(ih : j(L)π) =
∑

l∈I(m,a)

∑
h∈H

sign(h)T µ(ih : j(l)) (22)

To this claim we associate to a multi-index l ∈ I(m, a) its contents |l| = λ = (λ1, . . . , λm)
which is defined by λi := |{1 ≤ t ≤ a| lt = i}|. It is a composition of a into m parts, that
is an m-tuple of non negative integers λi summing up to a. These compositions count the
set of Sa-orbits in I(m, a). Denoting the set of all such compositions by Λ(m, a) we can
write down the righthand term in (22) as a sum of subsums

∑
λ∈Λ(m,r) Σλ each of which

is given by

Σλ :=
∑
|l|=λ

∑
h∈H

sign(h)T µ(ih : j(l))

Now, the subsum Σωa (for ωa = (1a)) is just the lefthand side in (22). Therefore, it
remains to show that all other subsums are zero. To this claim we denote the cardinality
of the standard Young subgroup Sλ of Sa corresponding to the composition λ ∈ Λ(m, a)
by kλ := |Sλ|. If k = (k1, . . . , ka) ∈ I(m, a) is the unique multi-index with contents λ and
k1 ≤ k2 ≤ . . . ≤ kr (the initial index corresponding to λ) then Sλ is just the stabilizer of
k in Sa. Identifying Sa with W 1 it is the stabilizer of j(k) ∈ I(n, r) in W 1. Applying (21)
again we obtain

T ωr(i : j(k)) =
∑
h∈H

sign(h)
∑

π∈W 1

T µ(ih : j(k)π) =

kλ

∑
h∈H

sign(h)
∑
|l|=λ

T µ(ih : j(l)) = kλΣλ.

Now, T ωr(i : j(k)) must be zero since |k| 6= ωa implies that k contains at least one num-
ber twice. We obtain kλΣλ = 0 and because this equation is allready valid in the free
Z-module AZ(n, r) we conclude Σλ = 0 for all λ 6= ωa completing the proof. 2

Let us prove proposition 7.3 in the case λ = ωr first. Take j ∈ I(n, r)\Isym
ωr

. Using
the classical straighening algorithm 7.2 we may assume j ∈ Iωr

\Isym
ωr

(observe that k =
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jw implies f(k) = f(j)). This means, that j is a multi-index corresponding to a non
symplectic ordered set J ∈ P (n, r) in the sense of lemma 8.1. Application of the latter
one yields

X := vJ −
∑

K∈P (n,r), f(k)<f(j)

ajkvK ∈ N

According to proposition 8.2 τ∧(X) must be contained in
∧

R(n)⊗ < d > where < d >
denotes the ideal in As

R(n) generated by d. Applying (17) we obtain the following equation
in

∧
R(n, r)⊗ Ash

R (n, r):

∑
I∈P (n,r)

vI ⊗

T ωr(i : j)−
∑

K∈P (n,r), k�j

ajkT
ωr(i : k)

 = 0.

Since {vI | I ∈ P (n, r)} is a basis of
∧

R(n, r) each individual summand in the summation
over P (n, r) must be zero. This gives the desired result in the case of multi-indices i
corresponding to ordered subsets I ∈ P (n, r), that is i ∈ Iωr

. The general case for i can
be deduced from this, easily (see [Oe], 3.11.4).

Now, lets turn to the general case of λ. Again, we may assume j ∈ Iλ\I
sym
λ by the classical

straightening algorithm. Let λ′ = (µ1, . . . , µp) be the dual partition (p = λ1). We spilt j
into pmulti-indices jl ∈ I(n, µl) where for each l ∈ p the entries of jl are taken from the l-th

column of T λ
j . The same thing can be done with i. Since j is not λ-symplectic standard but

standard there must be a colunm s such that js is not ωµs-symplectic standard. Applying
the result to the known case of T ωµs (is : js) we obtain

T λ(i : j) = T ωµ1 (i1 : j1)T ωµ2 (i2 : j2) . . . T ωµs (is : js) . . . T ωµp (ip : jp)

≡
∑

ajsksT ωµ1 (i1 : j1) . . . T ωµs (is : ks) . . . T ωµp (ip : jp) =
∑

ajkT
λ(i : k).

Therein, ks ∈ I(n, µs) satisfies ks � js, k ∈ I(n, r) is constructed from j replacing the
entries of js by that of ks and ajk is the same as ajsks for the corresponding ks. One easily
checks k � j and the proof of 7.3 is completed.
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