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1 Introduction

The general linear group GL,(K) operates on V®" the r-fold tensor space of its natural
module V. Its group algebra factored by the kernel of this operation is called the Schur
algebra and denoted S(n,r). By place permutation the symmetric group S, operates on
V& too. Moreover, both actions centralize each other. This fact is known as Schur- Weyl-
Duality.

This situation admits a g-analogue which has been introduced by R. Dipper and G. James
in [DJ]. Here, instead of the symmetric group you have to take the Twahori-Hecke algebra
of type A. Its centralizer is called the q-Schur algebra. There are various generalizations
of this theory for instance by Dipper, James and A. Mathas [DJM] who replaced the
Iwahori-Hecke algebras by Ariki-Koike algebras leading to so called cyclotomic q-Schur
algebras. On the other hand the original ¢-Schur algebra can be obtained (up to Morita
equivalence, cf. [DJ2]) using constructions from the theory of quantum groups [DD]. In
this paper we will apply these constructions to obtain ¢g-Schur algebras which are related
to the symplectic groups. We will denote them by S7(n,r). Setting the deformation pa-
rameter ¢ = 1, we obtain classical symplectic Schur algebras in the sense of S. Donkin
[Dol]. The main result in this paper is that the symplectic ¢-Schur algebras are cellular
in the sense of J. Graham and G. Lehrer [GL] and integrally quasi-hereditary as algebras
over the ring of integer Laurent polynomials.

In order to obtain the cellular basis we introduce a quantum symplectic version of bideter-
minants. In [O2] the author has presented a symplectic version of the famous straightening
formula for bideterminants in the classical case. Here, we will develop the fundamental
calculus for quantum symplectic bideterminants and give a quantized version of that
straightening formula. This formula is powerful enough to imply almost all results of the

paper.

The standard modules (or cell representations) of S5(n,r) are indexed by pairs (A,[) con-
sisting of an integer 0 <1 < ¢ and a partition A € A*(m,r — 2[) of r — 2/ into not more
than m parts. Here n = 2m is the dimension of the natural module of the symplectic
group. The part of the basis corresponding to (A, 1) is labelled by pairs of \-symplectic
standard tableauz in the sense of R.C. King [Ki], or more precisely by a reversed version
of them.

The material of this paper is taken from my doctoral thesis [O1] arranged in a completely
reorganized form. Furthermore, it contains some improvements. Thus the restrictions in
[O1, 3.12.14] and [O1, 4.1.2] have been removed in Theorems 7.1 and 7.3. The technical
ingredients for this are developed in section 14. Also, the proof of Proposition 12.1 is
more direct and shortened compared to [O1, 3.10.4].
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2  Quantum Symplectic Monoids

Let R be a noetherian integral domain and ¢ € R an invertible element. Let V be a free
R-module of rank n = 2m. Fix a basis {vy,...,v,} and let e;; denote the corresponding
basis of matrix units for £ := Endg(V). We will define two endomorphisms 5 and ~y
on V ® V identifying Endg(V ®@ V) with £ ® £ (we write simply ® instead of ®p if no
ambiguity can arise). Some additional notation is needed. We set

(p1y--espn)=mm—1,...,1,—-1,...,—(m —1),—m)
and €; := sign(p;). Further, ¢/ ;== n — i+ 1 defines an involution on n := {1,...,n}. Thus
(1,2,....nYy=(n,n—1,...,1).

The following definition is taken from [Ha2, Equation (4.3),(4.5)] (resp. [Hal, section 5])
using the transformation 3 = ¢*8,-1(Cy,) and v = .

g:= Z (¢Pesi ® e + e ® e) + q Z eij ® ejit

1<i<n 1<i#j,j'<n
2 y
+(g"— 1) E (i ® ej5 — q" Pieiejeiy @ epy),
1<j<i<n

and

v = Z g P e @ e
1<i,j<n
There are slightly more general versions of these endomorphisms involving additional
parameters. We may omit them without loss of generality (see [O1, Satz 2.5.8]). The
operators 3 and v are related to each other by the equation (cf. [Ha2, Equation (4.4)])

(> = 1)(y —idye2) = ¢*671 = 3. (1)
For r € N write r := {1,...,r}. A multi-index is a map i:r — n frequently denoted as
an r-tuple i = (i1, ...,4,) where i; € n. The set of all such multi-indices will be denoted

by I(n,r). We define

V=0, QU Q...00, eEVRAVR...QV =V,
r-times

An endomorphism g of V" may be given by its coefficients j;; with respect to the basis
{vi| 1 € I(n,r)} of V¥, that is

plog) = Y o

icl(n,r)

Let Fr(n) := R(X11, X12,..., X,,) be the free algebra generated by the n? symbols X;;
for i,j € n. This is a graded algebra; an R-basis of the r-th homogeneous part Fg(n,r)
is the set

{Xi.i = Xi1j1 o 'Xi2j2 T Xi'rj'r’ 17j € [<n7T)}
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To simplify notation we introduce a new convention to write down frequently used ele-
ments of Fr(n) and its quotients in a convenient way. For an endomorphism g on V®"
we write

1l X = Z ik Xk; and Xy Z Xik k- (2)

kel(n,r) kel(n,r)

This definition can be linearly extended to all of Fg(n,r). The following rules are easily
checked.

NXy; =X
= X L1 (3)
JI (1/ l Xij) (V,U) l Xij

(L1 X))ty = p(Xy)

We will denote the residue classes of X;; in any quotient of Fr(n) by x;;. The residue
class zj; of Xj; then clearly has a similar expression in the z;; as the Xj; do in the X;;.
The above introduced convention will be used for zj; accordingly.

The object of our investigations is given by the following definition:

Rq(n) = Fr(n)/ (B X5 — X516, v1 X5 — X559 1,j€1(n,2)).

Here the brackets () denote the ideal generated by the enclosed elements and (3, v are the
endomorphisms on V ®V defined above. Since this ideal in the definition is homogeneous,
the algebra A% (n) = D, ey, ARq(n r) is again graded. Here, A% (n,r) is the R-linear
span of the elements xj; for i,j € I(n,7). The algebra A%, (n) can be identified with a
generalized F'RT-construction with respect to the subset N := {3,7} C £ ® £ denoted
MRpr(N) in [O2, section 5. It has been pointed out there that it possesses the structure
of a bialgebra where comultiplication and augmentation on the generators zj; are given
by

Alryg) = Y za®myg, elay) =6y (4)

kel(n,r)

In particular, the homogeneous summands A3 q( n,r) are subcoalgebras. Furthermore,
the tensor space V" is an A% (n) (vesp. A%, (n,7))-(right-)comodule. The structure
map 7, : V& — V& @ A% (n, 7") is defined by

Z v; ® Tij-
i€l(n,r)

Now, if ¢> — 1 is an invertible element in R, the endomorphism ~ is known to be in the
algebraic span of 3; explicitly one has

_ ¢ =B

21 + idy 2.

Thus, by [02, Corollary 2.3] the relations 7 zj; = x5 1 7 are redundant in this case. The
reader may check that under these circumstances our bialgebra A% (n) is identical to the
matrix bialgebra of the usual FRT-construction Fr(n)/ (61X — X550, 1,j € 1(n,2))
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connected with the symplectic group for example denoted F3(M,,) in [CP, 7.3 c|.

On the other hand, if ¢*—1 is not invertible we really need to add the relations yxs; = x50y.
For instance, it has been proved in [02, Corollary 6.2] that, setting ¢ = 1, the bialgebra
A% ,(n) is the coordinate ring of the symplectic monoid scheme SpM,, (R) which is defined
by

SpM, (R) := {A € M,,(R)| 3 d(A) € R, A'JA = AJA! = d(A)J}.

Here, J is the Gram-matrix of the canonical skew bilinear form, that is J = (J;j)ijen
where J;; := €;0;;. The regular function d : SpM,,(R) — R is called the coefficient of
dilation (cf. [Dt1]). On the other hand, in this case the bialgebra of the usual FRT-
construction equals Agr(n) = R[x11, 12, . . ., Tpy|, the commutative polynomial ring in the
x;j, which is just the coordinate ring of the monoid scheme M, (R) of n x n-matrices.
Consequently the bialgebra of the usual FRT-construction contains (¢> — 1)-torsion el-
ements considered over the ground ring R = Z [q, ¢~'| of integer Laurent polynomials in q.

Let us write down a couple of consequent relations holding in A% (n). For this purpose
the algebraic span of the V® -endomorphisms

B; == idyei-1 ® f ®idyer—i-1 and ;= idyei-1 @ Y ®idyer—i-r 1=1,...,r — 1

in Endg(V®") will be denoted by A, (for all » > 1). According to [O2, section 1, 5] in
A% ,(n,7) the following relations hold for all » > 1:

play =xylp forall pe A, i,je I(n,r). (5)

The reader should also note that by [O2, Lemma 2.2] all elements of .4, must be morphisms
of A% (n,7)-comodules.

3 Quantum Symplectic Bideterminants

Let p,r € N be positive integers and A(p,r) denote the set of compositions of r into p
parts. These are p-tuples A = (A1,...,\,) of non-negative integers \; € N summing
up to r. To each composition A € A(p,r) there corresponds a parabolic subgroup in the
symmetric group S,, called the standard Young subgroup. We will denote it by S,. It
is the subgroup fixing the sets {1,2,..., A1}, {M+ LA +2,...,A + Ao}, .... Now, let
w € S, be given by a reduced expression w = s;,s;, - - - ;,, where the s; = (i,7+ 1) are the
simple transpositions. We define endomorphisms

5(’[1)) = ﬁilﬂiz cee 6% S EHdR(V@)T) = EDdR(V@)T)

for » > 1 and set f(w) = idy € &€ for r = 1. It is easy to see that this definition is
independent of the choice of the reduced expression for w since any two of them can
be transformed into each other using the braid relations. But [ satisfies the quantum
Yang-Baxter equation which is just the second type braid relation

ﬁiﬁl#lﬁi = ﬁi+1ﬁi/8i+1
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in the case © = 1. The latter one obviously implies the relations for ¢+ > 1, whereas the
first type braid relations 3;3; = 3;0; for |i — j| > 1 hold trivially. Observe that

Bluww') = B(w)B(w’) if I(ww') = l(w) + I(w).
where [(w) denotes the length of w, that is the number of transpositions in a reduced
expression. Setting y := ¢* and using our notation (2) we associate a quantum symplectic
bideterminant to each triple consisting of a composition A of r and a pair of multi-indices
i,j € I(n,r) by

B3 = 3 () ) g = 3 () g2 ). ()
WESH wESH
The equality therein follows from (5) applied to © = f(w). Using the abbreviation
Fox = D pes, (=) W B(w) € Endg(V®) we also may write £)(i: j) = kx Qzi; = o35 L k.
If ¢ is set to 1, we obtain

Tij LB(w) = Ti(jw—1) and B(w) L Tij = T(iw);

since then f(w)kj = kju-1 = Okwj. Therefore, in this case our quantum symplectic
bideterminants coincide with ordinary bideterminants which are defined as products of
minor \; X A\;-determinants, one factor for each entry \; of the composition A. According
to familar notation we write for a partition A

YA A/o.o
Thi:j) =t (1))

By a partition we mean a composition A = (A1,...,\,) ordered decreasingly (A > Ay >
... > Xy > 0). The subset of A(p, r) consisting of all partitions will be denoted by A (p, 7).
By N we denote the dual of the partition A, that is X' = (A],..., \]) where s = A; and
;= |{j] A\; > i}|. Using this notation one obtains precisely the classical bideterminant
TA(i:j) (as defined in [Ma, 2.4] for instance) when ¢ is set to 1. Observe that the capital
T notation is more restricted since not all compositions occur as duals of partitions. This
makes it necessary to consider té(i : j) as well for technical reasons.

It should be remarked that the well known quantum determinants corresponding to the
general linear groups (see for example [DD, 4.1.2, 4.1.7], [CP, p. 236], [Tk, p. 152], [Hal,
p. 157]) can be defined in a similar way using the quantum Yang-Baxter operator of type A
instead of our . In contrast, explicit expressions for quantum symplectic bideterminants
become very complicated for r > 2 (apart from the case A = «,. := (r) € AT (1, ) in which
case the bideterminants 77" (i : j) just are the monomials z3;). Denoting the fundamental
weights by w, := (1,1,...,1) € A*(r,r), one obtains a single r X r-minor determinant. If
r = 2, explicit expressions are for example

Tki Ty
Ty Xy

=T ((k, 1) 2 (6,4)) = Tty — ¢ T
q

itk<lyi<ji#j =n—j+1and

Tki Lkt
Ty Ty

i—1
= T;Q((k’, l) . (Z, Z/)) = TiX1y — q_Q.Z’ki/.CEli — (q_2 — 1) Z qj_ia:kj/xlj,
q j=1
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in the cases k < [,4 < m. The calculation of T;*((j, k,1) : (i,i',4)) for j <k <l,i <mis
really hard work. Note that such a bideterminant might be different from zero even if it
contains two identical columns.

4 Quantum Coefficient of Dilation

In the definition of the symplectic monoid SpM,, (R) we have introduced a function called
the coefficient of dilation. This is necessarily a regular function in the sense of algebraic
geometry. Now we will define its quantization which will be called the quantum coefficient
of dilation. Using notation (2) we see that

n
—q " Peper Y lrgayar) = q e E q" €Ty .
i—1

is independent of k, whereas

—q *Peper Ty 1Y = —q e Z Q" €T Thry
i=1
is independent of [. But, as v &ur@r) = Ty Ly according to (5), both expressions
coincide and consequently are independent of both k£ and [. Thus, the element

dg = —q """Pepe VTpyary = —q e Trya) LY (7)

is well defined in A%  (n). In fact it is a grouplike element of this bialgebra. More precisely
it is the coefficient function of the one dimensional subcomodule of V' ® V' that is spanned
by the tensor

J* = Z €q¢"v; @uy €V V.
i=1
To see this, note that J* = v(—q¢ " ev; ® vp) for each [ and that  is a morphism of
A% 4(n)-comodules. One calculates

n

n(J*) = oy(—¢ au @) = (y@id)( D (1 @ 0k) ® (¢ et Tmn)) =
ik=1

JT®q e Z ¢ en Tapnay) = J R dy.
k=1

Remark 4.1 The element J* coincides with ¢ from [Hal, section 6] if ¢ is substituted

for ¢~!. Therefore d, is identical to the grouplike element called quad there. By [Hal,

Corollary 6.3] it is central.

Lemma 4.2 Let 5 € m and k,l € n. Then we have

J J

—i i—2j
E q T LB = E q" P g xy.
i=1 i=1
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Proor: We calculate

Sl i 1 = Sl e = (v = 1) D0 v )
- 11 4 P — (y — 1) Z1gh§¢§j Y e,
Since Y3, ic; ¥ d vt = Yhoy (U1 v ) wiwern, and (y — 1) 3y =y~

y~7 we obtain

htl _

J
(y—1) Z v e, = Z:qz(y*”rl —y gy
1

1<h<i<j i=

where on the right hand side the summation index h has been replaced by ¢ again. Sub-
stituting this into the second equation of the proof leads to our claim. O

For | = m we deduce the connection formula

Proposition 4.3 The quantum symplectic 2 x 2-determinants are related to the coefficient
of dilation by

m -k ’
i . q "d, k=1 and k < m,
ST G =4 4 L
i=1 '
PrOOF: By definition of bideterminants and the above lemma we have

2 qiiT;}Q((ka 0: (7)) = Y, q*‘j(xkixl,-/ — yilﬁkixlz" 1 3)
27@11 q "TpTy — q’_z(m“)xki/x“
g MO 6P Ty

On the other hand we see

TemTo Y = — D i @ P e €T Ty
q 2 :1/:1 iq kitli

Putting these things together we obtain
Z qiiTt;UQ((ka l) : (iv Zl)) = _qim72ka$lm’ Ly
i=1

Since T Ty 1Y = YTgm T holds by (5) it follows that the expression vanishes if [ # &'.
In the case [ = kK’ we deduce from (7) the equation —q ™ 24Ty 1y = ¢ *d, which
finishes the proof. O

5 The Symplectic ¢-Schur algebra

Remember that A% (n,7) is a coalgebra for each r. Therefore, its dual R-module inherits
the structure of an R-algebra. We define

j’%’q(n,r) = HomR(A}q(n,r), R)
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and call it the symplectic g-Schur algebra. Two linear forms pu,v € Sy, (n,r) are multiplied
by convolution, that is

uv(a) == (n® v) o Aa)

for all a € A% (n,r). The reader may verify that one obtains the symplectic Schur alge-
bra in the classical situation as defined in [O2]. This also is identical to the symplectic
Schur algebra in the sense of S. Donkin, respectively S. Doty ([Do2] respectively [Dt1]).
One aim is to show that the construction is stable under base changes and that it is a free
R-module. Both facts follow when we have shown that A%  (n,r) is free as an R-module.
Further we want to initiate the study of the representation theory of this algebra. An
easy way to do this is to check that the axioms of a cellular algebra given by J. Graham
and G. Lehrer in [GL] hold. These axioms are as follows:

Let A be an associative unital algebra over a commutative unital ring R together with a
partially ordered finite set A and finite sets M () to each A € A (the set of “A-tableaux”).
A is called a cellular algebra if the following properties hold:

(C1) A possesses an R-basis {C3p| A€ A, S,T € M(\)}.

*

(C2) A posesses an R-linear involution * which is an algebra anti-automorphism such
that C3, = C ¢ holds for all A € A and S,T € M ().

(C3) Forallae A;A € A and S,T € M()) the congruence relation

aClr = Z ra(S,5)C% r mod A(< N),

S'eM(N)

holds, where the elements r,(S’,S) € R are independent of 7" and A(< ) is defined
as the R-linear span of basis elements Cf;,, where u < A and U,V € M(u).

Starting with these axioms the representation theory of A is developed in [GL] along the
following lines. To each A € A a standard module W (\) is defined on a free R-basis
{C3] S € M(N\)}. An element a € A acts on it via aCd = dosreM() r.(S',S)C%. Each
W () possesses a symmetric bilinear form ¢, for which the formula ¢, (a*z,y) = ¢a(z, ay)
is valid for all @ € A and x,y € W(A). In the case where R is a field and ¢, # 0, the
radical of W () is the same as the radical of the bilinear form ¢,. The simple head L) of
W (A) then is absolutely irreducible. In this way a complete set of pairwise non-isomorphic
simple A-modules {L,| A € Ag} can be obtained. Here we have set Ay := {\ € A| ¢, # 0}.

Denoting the multiplicity of L, in W(X) by d», to each A € A and p € Ay Graham and
Lehrer show that dy, = 0 for A < p and dy, = 1. To each order refining the given partial
order on A the corresponding decomposition matrix D = (dy,)aea uen, 1S unitriangular.
The Cartan-matrix C can be calculated as C'= D'D. The theory also supplies a criterion
to decide whether A is semisimple or quasi-hereditary. In the first case we must have
rad(¢,) = (0) for all A € A whereas in the second case Ay = A will do.

Examples of cellular algebras are the Brauer centralizer algebras Bg,,, Ariki-Koike-
Hecke-algebras, Temperley-Lieb and Jones algebras ([GL]). R.M. Green (|[GR]) constructs
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a g-analogue of the codeterminant basis (in the sense of [Gr]) for the classical Schur al-
gebra Sg(n,r) which is cellular as well. The corresponding standard modules W () are
precisely the ¢-Weyl modules in the sense of [DJ2] (see [GR], Proposition 5.3.6).

It should be remarked that the finiteness of A is not postulated in the original definition.
Since this property is valid in our example we impose this restriction to avoid unnecessary
trouble (cf. discussion in [KX], section 3).

Since we have defined the symplectic ¢g-Schur algebra as the dual module of a coalgebra
we now translate the concept of cellular algebras to coalgebras:

Let K be a coalgebra over a commutative unital ring R, together with a partially ordered
finite set A and finite sets M () for each A € A. We call K a cellular coalgebra if the
following properties hold:

(C1¥*) K possesses an R-basis {Dg,| A€ A, S, T € M(\)}.

(C2*) K possesses an R-linear involution * which is a coalgebra anti-automorphism, such
that D}, = D} ¢ holds for all A € A and S,T € M(X).

(C3*) For all A € A and S,T € M () the congruence relation

ADgr)= > h(S,8)® Dy, mod K@ K(>))
S'eM(N)

holds, where the coalgebra elements h(S’, S) € K are independent of 7" and K (> )
is defined as the R-linear span of basis elements Dy, where 1 > A and U, V' € M (p).

To an arbitrary R-coalgebra the dual algebra is well defined. The dual coalgebra of an
algebra A is well defined if the algebra is known to be projective as an R-module, since
then (A® A)" ~ A* @ A*. In the case of a cellular algebra this is obviously valid. The
connection between the above two concepts is given by the following proposition which
can be proved straightforwardly using structure constants with respect to the bases (cf.
(01, 4.2.3]).

Proposition 5.1 The dual algebra of a cellular coalgebra is a cellular algebra. The dual
coalgebra of a cellular algebra is a cellular coalgebra. In both cases the corresponding
bases and involution maps can be constructed dual to each other, i.e. in the former case
Cyp(Dfy) is 1 if X = p, S = U and T =V but 0 otherwise and Cg(Df ") =
Car (Diy).

According to the proposition our next task is to find a cellular basis for the coalgebra
A% ,(n,7) together with an appropriate involution map such that the axioms of the cellular
coalgebra hold. As soon as this is done the representation theory of Sﬁ%’q(n, r) is developed
to the extent indicated above.
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6 Tableaux

We will define a basis for ASR’q(n,r) consisting of quantum symplectic bideterminants
and powers of the quantum symplectic coefficient of dilation. Since they are too large in
number we have to single out an appropriate subset. This can be done using so called
A-tableaux which will be defined now. To each partition one associates a Young-diagram
reading row lengths out of the components );. For example

|

is associated to A = (3,2,2,1) € A*(4,8). A M-tableau T}" is constructed from the diagram
of A by inserting the components of a multi-index i € I(n,r) column by column into the
boxes. In the above example:

i 15| is]
i2| 16
T =12
13| 7
iy

If X is fixed we will sometimes identify multi-indices with their tableaux. We put a new
order < on the set n, namely

m=<m'<(m-1)<(m-1<...<1=<1".

The reason, why we prefer < instead of the order < considered in [O2] will become clear
later on. Now, a multi-index i is called A-column standard if the entries in T} are strictly
increasing down columns according to this order. It is called A\-row standard if the entries
are weakly increasing along rows and A-standard if it is both at the same time. We write
I, to denote the subset of I(n,r) consisting of all A-standard multi-indices. Such a multi-
index i € I, is called A-reverse symplectic standard if for each index 7 € m the occurrences
of i as well as 4’ in T} are limited to the first m — i + 1 rows. The corresponding subset of
I, will be denoted by I,¥*. It can be shown that even though this set is different from the
one of A-symplectic standard tableaux (as defined in [Ki] and denoted I3"™ in [O2]), it has
the same number of elements. For let o0 € §,, be the permutation transforming the order
< into <, that is (i) := (m —i+ 1)’ for i < m and o(i) := m — 4’ + 1 for i > m. Then
there is an induced bijection on I(n,r) sending (i1, ...,1.) to (6(i1),...,0(i.)) which car-
ries the set of A-symplectic standard tableaux precisely to the set of A-reverse symplectic
standard tableaux.

Here are some examples in the case m =3 (1’ =6,2' = 5,3 = 4):

31212] [1][2]2] [3]2]2]
2’2" 22 32
2|1 23 11
1
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The first tableau is an element of I3 whereas the third is not. The second tableau is
an element of I™. It is obtained from the first one via the bijection induced from the

permutation o described above.

7 Results

Let us first describe what we will take for the set A occurring in the definition of the
cellular coalgebra:

A={A=\D0<I< =, Ae At (m,r—2)}.

N3

According to the definition of a cellular coalgebra to each A = (A1) € A a set M (\) must
be assigned. We take:

M(A) = 1™,

Finally the basis elements themselves are defined by

D3 = dTMi+ ).

17J

Now, our principal aim is to prove the following
Theorem 7.1 The R-module A% (n,7) has a basis given by

—{D JAeNije M)}

Furthermore, the unique R-linear map * with D* = D*. s an involutory coalgebra anti-
automorphism and the axioms of a cellular coalgebm are satisfied.

By Proposition 5.1 we may conclude immediately:

Theorem 7.2 The symplectic q-Schur algebra S§7q(n,r) 15 a cellular algebra with the
basis dual to B, as a cellular basis.

Theorem 7.3 The symplectic q-Schur algebra is stable under base change and it is iden-
tical with the centralizer of the algebraic span A, of the endomorphisms 3; and ;.

ProoF: This is a consequence of Theorem 7.1 by [O2, Theorems 3.3 and 4.3] (cf. [O2,
Corollary 6.3]). O
Remark 7.4 The theorem sets S% ,(n,7) into relation with the Birman-Murakami-Wenzl

algebra since 3; and ~; define a representation of it on V& (cf. [O1, Satz 2.2.3]).

At the end of this paper we will improve Theorem 7.2 by showing that the bilinear form
¢, on the standard modules W)y, is nonzero for each A. By [GL, 3.10] this implies

Theorem 7.5 The symplectic q-Schur algebra S%, (n,r) is integrally quasi-hereditary.
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Let us first see how the involution of Theorem 7.1 arises. It realizes matrix transposition
for our quantum monoid. On the generators z;j; this transposition map is defined as in the
classical case by xy* := zj;. Indeed, this gives a well defined algebra map on A%  (n), since
the coefficient matrices of § and v are symmetric (i.e. B = Gy and 735 = ;) implying
(Blay)* = x; L B and (yxy;)* = xj; 0y and thus keeping the relations of that algebra
fixed. Furthermore, the endomorphisms ) € Endz(V®") must have symmetric coefficient
matrices as well. We calculate

tg(l J)* = (/i)\ l l’ij)* = Tji LRy = tg(‘] . l) (8)
and in a similar way d,” = d, holds by definition (7). This shows that * factors to an

algebra map of A% (n). From the comultiplication rule (4) it directly follows that * is an
anti-coalgebra map. This implies axiom (C2*) of a cellular coalgebra.

The verification of axiom (C3*) is the second easiest step in the proof of Theorem 7.1,
but we will give it at the end of the paper since some additional ingredients are needed.
The first statement of this theorem, which is axiom (C1*), is the really hard one. It is
the g-analogue of [02, Theorem 6.1]. To prove it we will proceed in a similar way as
there. The difficulty is to show that B, is a set of generators. For that purpose the most
important step is a quantum symplectic version of the famous straightening formula.

8 The Quantum Symplectic Straightening Formula

In the classical case symplectic versions of the straightening formula have already been
given in [Co, 2.4] and [O2, section 7]. In principle, we will follow the lines of the latter
paper. But there are a lot of additional difficulties, one of which forces us to work with
a reversed version of A-symplectic standard tableaux. To prepare for the statement, we
define the algebra

AR g(n) == A (n)/ (dy)

by factoring out the ideal generated by the quantum coefficient of dilation. Since d,
is homogeneous this algebra is again graded. Let us abbreviate its r-th homogeneous
summand by K := Aﬁ%q(n,r). Since d, is grouplike the comultiplication A obviously
factors to A%, (n) and A}y (n,7). But AR (n) is not a bialgebra and A% (n,r) are not
coalgebras, because the augmentation map € does not factor. In the classical case if R = K
is a field A?g’q(n) equals the coordinate ring of the symplectic semigroup SpH, (K) :=
SpM,, (K)\GSp,,(K) by [02, remark 7.5]. The missing augmentation map corresponds to
the missing unit element in the semigroup.

Definition 8.1 Let A be an unital algebra and A : A — A® A a morphism of algebras.
If A possesses the properties of a comultiplication we call A a semibialgebra.

By the above explanations Aﬁgq(n) is a semibialgebra.

We put an order on the set A™(r) of all partitions of r, writing A < p if and only if
A occurs before p/ in the lexicographic order. In this order the fundamental weight
wy = (1,1,...,1) € A*(r,r) is the largest element, whereas «, := (r) € AT(1,r) is
the smallest one. We define IC(> A) (resp. (> A)) to be the R-linear span in C of all
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bideterminants T/(i : j) such that p > A (resp. u > A)(cf. axiom (C3*) of a cellular
coalgebra). Clearly I = K(> a.).

Proposition 8.2 (Quantum Symplectic Straightening Formula) Let A € AT (r) be
a partition of r and j € I(n,r). Then, to each k € I\ there is an element ag € R, such
that in K we have for alli € I(n,r):

TMNi:j)= > apT;(i:k) mod K(> \).

kel
Before starting to prove this, we deduce its most important consequence:
Corollary 8.3 The set B, generates Ay (n,r).

PROOF: From the fact that d, is central in A% (n) by Remark 4.1 we see that multipli-
cation by d, from the right (written as -d, below) leads to an exact sequence

A (nyr —2) D A% (n,r) — AR (n,7) — 0. ()

for r > 1. Therefore, using induction on r we can reduce to showing that

(TG A € A (m.r), 1j € 1)

is a set of generators for K = A3} (n,r). For this claim it is enough to show that

By :={T;(i:])] ije "}

is a set of generators of (> \)/K(> A) for each partition A. To get the last claim from
the straightening formula 8.2, observe that the involution * is well defined on A} (n)
since d," = d, (see section 7). Applying * to the congruence relation of Proposition 8.2,
one obtains another such formula in which the roles of i and j are exchanged. This shows
that B, is indeed a set of generators for (> \)/K(> A). O

In order to prove the quantum symplectic straightening formula we need a corresponding
algorithm. Its classical counterpart is [O2, Proposition 7.3]. We define amap f : I(n,r) —
N{ by f(i) = (a,...,a,), where

a:={jerli;=1 or i; =10},

and order N§ writing (a1,...,am,) < (b1,...,by) if and only if (by,bs,...,b,) appears
before (ai,as,...,a,) in the lexicographic order (induced by the ordinary order on N).
Next, we obtain an order < on N§* x I(n,r) defined by:

(a,1)<(b,j) = a<bor (a=bandi=<j).

Here, we have denoted by < the lexicographic order on I(n,r) induced by our special
order < on n. Finally, we obtain a second order <1 on I(n,r) via the embedding I(n,r) —
N{§* x I(n,r) given by i — (f(i),1). Now we are able to state the symplectic straightening
algorithm.

13
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Proposition 8.4 (Strong Quantum Symplectic Straightening Algorithm) Let
A € AT(r) be a partition of r and j € I(n,r)\I\"". Then to each k € I(n,r) satisfying
k <j there is an element ajx € R such that in K the following congruence relation holds
forallie I(n,r):

TMi:5) =) apT)(i:k) mod K(>\).

Clearly, the straightening formula 8.2 is an easy consequence of the above proposition
since the set I(n, ) is finite and therefore the elimination of multi-indices j that are not
A-reverse symplectic standard in an expression Tq)‘(i : j) must terminate.

The proof of the straightening algorithm will take several sections. In principle we will
proceed in a similar way as in [O2] to prove this algorithm, but complications arise because
the embedding of the symplectic group into the general linear group does not extend to
quantum groups. Instead of [O2, Proposition 7.2] we have to establish a weak form of the
quantum symplectic straightening algorithm in a first step. More precisely, we will first
prove Proposition 8.4 where I3 is substituted by I,. We start with some technical tools.

9 Arithmetic of Bideterminants

The calculus of bideterminants is needed inside K = ASRh,(I(n, r). Unless otherwise stated
the rules hold in A% ,(n,r) too. Recall the definition of sy from section 3.

Lemma 9.1 Let A\ € A(p,r) be a composition and y = ¢*>. Then to each i < r such that
the simple transposition s; = (i,1 + 1) is contained in the standard Young-subgroup Sy,
there are endomorphisms jix;, piy ; € Endg(VE") satisfying

iy = (idyer —y 1B prs = M/M-(id\/@T —y13).

PROOF:  Let us first reduce to the case A = «, = (r). Setting k, ‘= Kq,, ks =
Attt /\5—17 Hrg = Hay i, Mfr’z = :ular,z‘ and

/ii = idV®ks ® /i)\s ® idv®r7)\sfks,

we can extend the definition to arbitrary A by using the formula x) = £33 ... &} in which
the factors commute. Now, using standard reduced expressions for permutations w € S,
one easily verifies the following recursion rules for r > 1:

r—1
Ky = lir_l(idv®r + Z(_y)l_rﬁr—lﬁr—Q .- 5l) =
=1

r—1
(idver + > (=)' "BiBe1 - - Bro1) .
=1

We proceed by induction on r, the case r = 2 being clear. The case © < r — 1 can
be handled immediately with the help of the above recursion formula. If : = r — 1 we
calculate
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r—2

K = Kp_1(idyer —y ' Bri1) + Hy_ 1, o(idyer — y ' Bra) Z(_yy_rﬁr—lﬂr—Q B

=1

But by the braid relations we get

(idyer —y ' Bro2) (=) " Br1 Bz B = (=) BrcaBra ... Bilidyer — y T B,

yielding the right hand side factorization of k,.. The other formula is obtained similarly. O

Corollary 9.2 Let j € I(n,r) be a multi-index possessing two identical neighbouring
indices J; = jiy1 and X\ € A(p,r) such that the transposition s; is contained in Sy. Then
ta(i:j) =ty(j:i) =0 holds for alli € I(n,r).

PROOF: By assumption, vj lies in the kernel of (idyer — y~'f;). Consequently the as-
sertion concerning t,(i : j) follows immediately from Lemma 9.1 since £)(i : j) = 3 1 k.
Using the matrix transposition map * introduced in section 8, the formula for exchanged
multi-indices follows as well. O

Next, we investigate the transition from A% (n) to its epimorphic image Aj%q (n). For this
purpose denote by G, the ideal generated by G := 7, = v ® idyer—2 in the algebraic span
A, of the endomorphisms f3; and v;. By equation (1) the relation 3? = (¢*> —1)3+ ¢?idyery
holds in A,/G,. By the braid relations 3;8;,10; = Bi+13:0:41 the relations 82 = (¢* —
1)3; + ¢*idyer and 4; = 0 must hold in A, /G, for all i as well. The Iwahori-Hecke algebra
H,(r) of type A is defined on generators T, for i € {1,...,r — 1} by relations

T, T, =TT, where |i — j| > 1,
T,T,.. T, =T, T,T,, where ¢ <r — 1,

T2 = (q2 - ]‘)TSI + q2'

Si

Therefore, there is an epimorphism from H,(r) to the quotient A, /G, sending the gener-
ator T, to 3, + G, (notation as in [DD]).

Lemma 9.3 Let A, B € A, be endomorphisms of V®" such that A = B modulo G,. Then,
the equation x50 A = 450 B holds in K.

PrOOF: We have to show that z;;0 A =0 for all A € G,. Let F, H € A, be such that
A = FGH. From the defining equation of the quantum coefficient of dilation d, from
section 4 we have

. ) y )
1 G — 0 Ji 7 J2 Or 1y F ia,
1) - — Pi1+Pj1€. € d Tio s €Ti - =4 and i/ = Z
q i1€j1 Qg Ligjs - - - Liejr  J1 = J2 1 2

This means z;30 G = 0 in K for all i,j € I(n,r). By (5) we have 30 F = F lxj and
therefore,

15
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zijl FGH = Z Tix fugishsy = Z JixTagishs; = Z fix(zks L G)hgg =

k,l,s€I(n,r) k,l,s€I(n,r) k,sel(n,r)
where (fij)ijernr)s (9i)ijermr) and (hij)ijern,r) are the coefficient matrices of F, G and
H. O

We extend the notation introduced in (2). Let g € Endg(V®") be an endomorphism of
Ve, Set

ty( ) i = Dcrpn ta (L K g = 235 L (Rap),
paty(:3) = s kg (k1 J) = (rn) L.
Similar expressions are used with respect to the capital 1" notation for bideterminants.

(10)

Lemma 9.4 For alli,j € I(n,r) and w € Sy the following equations hold in K:
Blw) tty(i:§) = Bw) " a5 §) = (~1)eg( ) = t9(i ) 18(w) ™! = 13311 §) 1 B(w)

ProOOF: Modulo G, we have

Blw)rx = Blw) ey = (=1)Wry = maf(w) ™" = maB(w)
since the corresponding equations (where f(w) is replaced by T;,) hold in the Iwahori-
Hecke algebra H,(r). Thus the assertion follows from Lemma 9.3. O

Let J denote the ideal in the tensor algebra 7 (V') = @, y, V" generated by the twofold
invariant tensor J* = Y "  €¢”v; @ vy € V@V and let J, == J NV® be its r-th
homogeneous summand.

Lemma 9.5 Let U be the R-linear span of all elements ~y(v;) where 1 < | < r and
i€ I(n,r). ThenU = J,.

PROOF: Since y(vpvp) = —epq J* and y(vgvy) = 0 for all k,1 € r with k # I’ by section
4 it follows that U is contained in J,. The verification of the opposite inclusion can be
reduced to consider elements of the form v J*v; with i € I(n,l —1),j € I(n,r — 1 —1)
for some 1 <1 < r. But such an element can be written as —e,q™ ", (vivRviv;) for some
k € r. Thus the assertion follows. O

Lemma 9.6 Let aj € R be such that 3 .y, a;v5 € Jr. Then, for alli € I(n,r) and all
compositions \ of r we have in K

Z ajryj =0, and Z agty(i:j) = 0.
j€l(n,r) J€l(n,r)

PrRoOOF: First, note that the second equation follows from the first one by definition of
bideterminants. By the above lemma we can reduce to the case » i, ) 405 = 7(vk)
where k € I(n,r),1 <1 <rand a; = (7)j. Thus we get 3 iy, 4% = Tic 1y = 0. O

Next, we give a quantum symplectic version of Laplace duality. The corresponding clas-
sical result can be found in [Ma, 2.5.1], for instance.
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Proposition 9.7 (Laplace Duality) Let A\, i € A(p,r) be compositions, Y a set of left
coset representatives of SxNS,, in Sy and X a set of right coset representatives of S\NS,,
in Sy, such that l(vw) = l(v) + l(w) and l(wu) = l(u) + l(w) holds for allv € Y,u € X
and w € SxNS,,. Then for alli,j € I(n,r) the following equation holds:

> (=) ) Bu) =Y (—y) T Bw) k().

Proor: Using the fact f(w)f(u) = B(wu), f(v)F(w) = F(vw) which holds by length
additivity we calculate

ZueX(_y) l(u)t)\<l J) ( ) Zw '€Sy ZuGX( ) Hw)=iC U)IJ ﬁ( )ﬁ( )
= ZUEY ZweSmS Zuex( y)~ How)= (u)xu LB (vw)B(u)
= ZveY EweSmS ZueX( y)~ Hw)=iw) —iw) w350 B(v) B(w)B(u)
= Z’UEY ZweSmS ZueX( y)~ Hw)= l(wu)xij L B(v)B(wu)
= Dvey ZweSmSH ZueX( y) 1O B (0) Blwu) L @
=D ey Ew”esu(_ )~ Bw) Bw”) 2 Lij
= Yoy (=9) B w) 1tk ).

Here, at the fifth step we have used equation (5). O

The next result is needed for the transition from t-bideterminants of compositions to
T-bideterminants of partitions.

Lemma 9.8 Let A € A(p,r) be a composition and i,j € I(n,r). Then the bideterminant
ta(i:j) can be written as a linear combination of bideterminants T," (k : 1).

PROOF: First, there is a permutation m € S, such that A = (Ar1), - - ., Angp)) € AT (p,7)
is a partition. This A is uniquely determined by A (but 7 only under the restriction to
be of minimal length). Clearly the parabolic subgroups S, and S5 in S, are conjugate
to each other. Thus, there is an element v € S, such that vS, = Syv. Furthermore, it
is known from the theory of parabolic subgroups that in the left coset vS) and in the
right coset Syv there are unique representatives w (resp. w) of minimal length called
distinguished coset representatives and that we have [(wu) = l(w) + [(u) for all u € S,
and [(uw) = (u) + [(w) for all u € S5. Consequently, we have (w)k) = k30(w). By the
definition of bideterminants (£)(i : j) := k2xs), the relations (5) holding inside A%, (n, )
and the calculus for the symbol ¢ given in (3) we obtain

Bw) )i :§) = )11 §) 1 Aw) = T (i : §) 1 Blaw).

Since N = ) this results in

t;(i;j)zg(w)*lzT;/(i:j)m(w): }: ﬂ(w)i’le[f'(k:l)ﬂ(w)lj.
k,lel(n,r)
O

Next, we introduce a calculus for our bideterminants bringing our special order < on
I(n,r) into the picture. First, some new notation has to be explained. The sum of two
multi-indices i € I(n,r) and j € I(n, s) is defined by juxtaposition, that is
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i+j:=01,. irJ1,---,7s) € I(n,7+s).

Note that the map f : I(n,r) — N occurring in Proposition 8.4 is additive in the sense
f(i+j) = f(i) + f(j). This implies

fi+]) < fli+k) and fG+1i) < flk+1i) if f() < f(k) (11)

with respect to the lexicographic order < on N{'. To a multi-index i € I(n,r) we consider
the following R-spans in V®":

Wii= (gl § € In,r), fG) < J0) and 5= (ol j € I(n,r), fG) < F(D).

Furthermore, we set

gt ifj#ad,
hij =4 1 if j =14 or j =4 where i > m,
qg? ifj=1i<m,
and denote the simple transpositions by s; = (I,1 + 1), as before. The following lemma is
the key concerning calculations with bideterminants. Again we set y = ¢°.

Lemma 9.9 For alli€ I(n,r) andl € r the following formulas hold in V®" modulo the
R-module Wj:

By(v;) = Yhi, i Vis, + (y — )(idyer — ) (vs) %f Z:l > 'l:l+17
Yhi i Vis, if i <ipyq,
B () = hig iy Vi + (7 = D(idver =) (v) i <,

A iy, iy Vis, if 4 > 141.
ProoOF: The congruence relation for 3, ! follows from the one for 3 because y3~! =
B+ (y — 1)(y —idye2) by (1). Therefore, it is enough to prove the first assertion.

First, consider the case 4, > 4;1. If 4 # ¢;,,, the asserted congruence relation is also an
equation, as can be seen directly from the definition of 3. Turning to the case i; = i}, =:
J < m, we split i into three summands

' = (ila cee ail—l)a i2 = (jlaj)7 i3 = (il+17 o ,ir)-

To k € n we set i(k) := i' + (k, k') + 1 and calculate

i

Bi(vs) = vig, + (y — Dvs — (y — 1) quk_pjek“i(k)'

k>j

Since (y — 1) > p_; ¢ Piere;vi) = (y — 1)vi(vi) we obtain the equation

Bu(vi) = vig, + (y = Dlidver — ) () + (y = 1) Y ¢ oy,

k<j

But i(j) = is; and

FG(R)) = FA) + f((k,K) + f(3) < fGY) + F((G9) + f(G7) = £G() = (1)
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for all £ < j by (11), yielding the asserted congruence modulo Wi. If iy < 4, the
interesting case is 7., = 4, =: j < m. Here the assertion immediately follows from the
calculation

5l(vi) = Vis; — (y - 1) Z qpk+pjvi(k)’

k>j

because f(i(k)) < f(i) for all k > /. O

Remark 9.10 By Lemma_ 9.5 the above lemma implies that W; + J, is invariant under
A,.. But, W; = Zf(j)<f(i) W; and thus, W; + J, must be invariant as well.

Corollary 9.11 Letj e I(n,r) andl € r. Then to eachk € I(n,r) satisfying f(k) < f(j)
there is aj(s;) in R (possibly zero) such that the following equations hold in K for all
iel(n,r):

TME )8 =hjn g TrGgs) + > ap(s)TNE:K) if Gi > i,
F&)<f@)

TMi:§) 06 = yhy, TG jsi) + Z aj(s)T) A K) if i < i
FK)<fQ)

PROOF: Note that (3, ')y; is the coefficient of vy in the expression 3, ' (v;). By definition
of bideterminants and the conventions (10) about ¢, the result follows immediately from
the lemma. O

Corollary 9.12 Letj € I(n,r) and w € Sy. Then there is an invertible element a;(w) €
R and to each k € I(n,r) satisfying f(k) < f(j) another element ap(w) in R such that
the following equations hold in IC for alli € I(n,r):

TMi:j) = a;(w)T)Gjw) + > ap(w)T) ([ k).
F)<f(Q)

PrROOF: We use induction on the length of w. If this is zero there is nothing to prove.
If not, we write w = w's; where w';s; € Sy and [(w') = [(w) — 1. By the induction
hypothesis we have

TMi:j) = a;(w)T)i: ju') + Z aj(w)T (i : k).
fR)<f()

But by Lemma 9.4 we have T)(i : juw') = =T(i : jw') 15" as well as T i : ju') =
=T q)‘(i : jw') 1 B;. Thus, the assertion follows from the preceding corollary and the fact
that f(j) = f(ju'). D

19



20 Sebastian Oehms

Lemma 9.13 Leti € I(n,r) satisfy iy < iy < ... <1, and let w € S, be arbitrary. Then
the following congruence relation holds in V" modulo the R-submodule W] = W; + J,.:

Blw™)(vs) = ¥ hs (W) vy

Here we have set hy(w) =[] h where the product runs over all pairs 1 < j < k <r

such that w(j) > w(k).

G (k) bw(j) 7

Proor: We use induction on 7, the case r = 1 being trivial. For » > 1 we embed S,_;
as the parabolic subgroup of S, generated by s1, ..., s, o, which fix . If w € S,_1, there
is nothing to prove by the induction hypothesis. Otherwise, we write w = w’s where
w' € 8,1 and s 1= 5,_15,_9...5;415; for an appropriate j < r, thus [(w) = [(w') + 1 — j.
By the induction hypothesis, Lemma 9.9 and Remark 9.10 we calculate

Blw=)(v) 5(5/_1)(3/l(w/)hi(w')viw')
liw Vhi(w)BBjs1 - - Bro1 (Vi)
(

l w’)yrfjhi(w/)h
¢ w)hi(w)viw.

iw/(r)iw’(rfl) iw’(r)iw’(r—Q) ttt iw’(r)iw/(j)viwls

)
Y
)

Corollary 9.14 Letj € I(n,r) satisfy ji1 < jio1 < ... < Jro1 < Ji forsome 1 <l <k <r
andw € S, satisfyw(i) =i for1 <i <lork <i<r. Then, to eachk € I(n,r) satisfying
f(k) < f(j) there is an element a3 (w) in R such that the following equations hold in KC
forallie I(n,r):

TMi:3)B(w) =y hi(w TMEju™) + ) ah(w)T)([i: k).
F09<£G)

PROOF: As for the proof of Corollary 9.11, this follows easily from the preceding lemma,
Lemma 9.6 and the definition of bideterminants. O

10 The Weak Straightening Algorithm

We are now able to give the proof of the following weak form of the straightening algo-
rithm.

Proposition 10.1 (Weak Quantum Symplectic Straightening Algorithm) Let
A € AT (r) be a partition of r and j € I(n,r)\I,. Then to each k € I(n,r) satisfying k <j
there is an element ajx € R such that in K the following congruence relation holds for all
iel(n,r):

TMNi:j) =) apT,(i:k) mod K(>\).

k<j

Proor: We divide into the following two cases

1. j is not A-column standard.
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2. j is A-column standard but not A-row standard.

Case 1:

By assumption there are two consecutive indices j; and ji4q in j = (41, ..., ) such that
Ji = Jiwr and s, = (1,1 + 1) € Sy. If j; = 7141, we have TqA(i : j) = 0 by Corollary 9.2,
implying our assertion. In the case j;.1 > j; we apply Corollary 9.12:

TNi:5) = ()T jst) + > ape(s)T;) (i k).

The multi-indices k in the sum satisfy f(k) < f(j) and consequently k <1j. Finally, since
f(G) = f(js;) and js; occurs before j in the lexicographic order on I(n,r) we have js; < j
as well.

Case 2:

In principle we follow the lines of the proof of [Ma, 2.5.7], but since A%  (n) is not com-
mutative we have to work with a fixed basic tableau. The change of basic tableaux in
[Ma, 2.5.7] can be compensated for by Lemma 9.8.

To start, let [ € r be the smallest index such that j; is larger than its right hand neighbour
Jv in the A-tableau of j. Assume that the entry j; lies in the s-th column j§ and that jy
lies in the s+ 1-th column j}™, where 1 < s < A;. Clearly, I' = [+ X.. Let t be the index
of the row containing both entries. We picture this by

.]f\ jiJrl
Ji—1 | Jr—1 |t —1
) t

Jigt | Jryr [ T+1

By assumption we have ... < jy_1 < jr < ji < Ji41 < .... Now, we refine the dual
partition X' of A to a composition n € A(p+2,r), where p := A; is the number of columns
of the diagram of A\. More precisely, we split the s-th and (s + 1)-th column in front of
and below the t-th row:

(N, 1<s
t—1 1=35 .
; <
N —t4+1 i=s+1 e b=
M=y i—sao 0 Hii= A Mst s i=s+1
. i ) 2
N —t i=s+3 T+t P
[ Ao t>s5+3

Obviously, this 7 is the coarsest refinement of the partition \" and the composition u €
A(p+ 1,r) defined above. Let us split the multi-index j according to 7 as follows:
io = Gnoondin)s 3= k1),

ijH = (Jntks -5 Jv), jf7+3 = (Ju+1s -5 Jhrhhi—1)-

21
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Here, h :==1—t+1= XN +...4+X,_; + 1 is the index of the first entry of the s-th column
and k := X, (resp. k' := X, ) are the lengths of both columns in question. We have

Ji :Jf] +jf]+1, ji+1 :jf)+2 +jf]+3 and set j;+1 — jf]Jrl +jf7+2.
In order to apply Laplace Duality 9.7 to the pair (A, 1) of compositions we have to choose
coset representatives of S, = Sy NS, in Sy and S, carefully. For our set X we choose
distinguished right coset representatives of S, in S, = S, x ... x S, ., (cf. proof of
Lemma 9.8); in fact, one looks for coset representatives of S, ,, X S,.., in S, ,. Since the
elements of X are distinguished we have [(wu) = I(w) +[(u) for all w € X and w € S, ac-
cording to the theory of parabolic subgroups. Similarly, one finds a set Y of distinguished

left coset representatives of S, in Sy satisfying l(vw) = l(v) +{(w) for w € S,y and v € Y.

We will not apply Laplace Duality to the original index pair i,j, for we must handle
the transition from the order < to <. Instead of j we rather consider j’ := jw where

w € S,,,, €&, is chosen in such a way that j; < ji,; < ... < j,_; < j; and j; = j; for
1 <i<lorl <i<r (theembedding of S, ,, is understood according to the composition

1t). This w exists uniquely since j5*' = (ji, . .., jr) contains exactly o1 = N, +1 elements

by the assumption jpix < jpgs1 < .- < Jr < Ji < ... < Jhik—1 on j. Now, by Laplace-
Duality we obtain

D (=) §)Bw) =D (—y) B k). (12)

ueX veY

With help of Lemma 9.8 the right hand side of this equation can be written as a linear
combination of bideterminants 7. ;/(k : 1). Thus the right hand side is seen to lie in
IKC(> \) as soon we have shown that ' > A. But that follows since the longest column
being removed from the diagram of A to obtain the diagram of ' has length \., whereas
a column of length ps 1 = A, 4+ 1 has to be added to the diagram of p/. On the left hand
side of (12) we may apply Corollary 9.14 by construction of the multi-index j':

(—y) T3 §) 0 F(w) = sign(u)hy (w TN §u™) + Y (=) W) TN k),

the sum running over all k satisfying f(k) < f(j’) = f(j). Now, for all u € X we have
u:=uw ' eS,,, sincewliesinS,,,,. Furthermore, there is a unique coset representative
uy € X satisfying S,up = S,w and this is the only one for which the corresponding @
lies in &,. Therefore, in the case u # wg there is an e such that [ < e < h + % and
h+k < at(e) < Choose such an e for each u € X. In doing so, we are assigning
a transposition @ := ([,e) to each u that is contained in S,. In the case of uy we set
Uy := Uy € S,. Applying Corollary 9.12 to @ one calculates

TNi:ju™) =T)i:ju ") = a ()T (1 i a) + ) aga-(@) T (i : k),

where the sum runs over all k satisfying f(k) < f(ja™!) = f(j), again. For these k we set
Ak = Z(—y)_l(“)ag,k(u) + sign(u)hy (u™ ) aga-1 (),
ueX

whereas in the case f(k) = f(j) we write
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—_— sign(u)hy (u™')ajz-1(a) if there exist v € X, k = ju'a
S 0 otherwise.

Observe that a;; occurs in the latter definition for u = ug. We assert that for u # v, the
multi-index k := ja~ '@ occurs before j in the lexicographic order with respect to <. For
by construction of 4 and 4 we have

ki = Jaraq) = Ja-1(e) € {ntks Thht1s -5 Jur}
and consequently k; < j;. But this implies k < j, since k; = j; for ¢ < [. Thus we obtain

—ayT)(i:j) =Y apT(i:k) mod K(>N).
k<j

Since the coefficient —aj; is invertible, the asserted congruence relation holds as well. O

It should be remarked that the proof works with any other order on n instead of < as
well. The proof of the strong part of the algorithm (Proposition 8.4) can be given right
now in the (initial) case r = 2 and we are going to do this not only because it is very
instructive, but also because we will need a basis of Aﬁm(n, 2) in order to proceed to the
general case.

If r = 2 there are exactly two partitions in A*(m, 2) for m > 2, namely 2w; and ws, where
w; = (1) and wy = (1,1) are the fundamental weights (see section 3). In the first case
we have I,, = 157, that is, the weak and the strong form of the straightening algorithm
coincide. Turning to w, there is exactly one element in 7, \I¥®, namely j = (m,m’). By

wy
Proposition 4.3 we obtain in K = A3 (n,2)

m—1
T2 (i (mom)) = —q™ > q Ty (i,1))
i=1
yielding Proposition 8.4 in the case r = 2 since (i,4") < (m,m') for all i < m.

Remark 10.2 If we had used the notion of symplectic standard tableau instead of the
reversed version we would have to consider (1’, 1) instead of (m,m’) in the last step above.
This would force us to work with a reversed version of the order chosen on N (as in
[02, section 7]). But this would cause some trouble concerning Lemma 9.9. One way
out could be a manipulation of the Yang-Baxter operator 3 conjugating it by the twofold
tensor product of the appropriate permutation on n. Thus, one has to decide between
working with the familiar version of 3 or following the familiar notion of tableaux.

11 Quantum Symplectic Exterior Algebra

We are going to prepare the proof of Proposition 8.4 for general r. Since we need a
g-analogue of [O2; Lemma 8.1], we have to investigate the quantum symplectic exterior
algebra. We start with its definition which can be found in many textbooks on quantum
groups (for instance [CP, chapter 7]). It is defined as the quotient of the tensor algebra
T(V) =D, en, V" by a certain ideal. We denote it by Ay (n) and write the symbol A
for multiplication in this algebra. Setting

23
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¢ =qvy ANv;, and d; == —q 'v; A\ vy

for i € m, we write down the defining relations holding in Ay (n) according to [Ha2,

(5.2)]:

Ay = —q o Ay, (13)
y ey = yldi+ (yt 1) Z d; (14)
j=it1
v = ya+y—1 > ¢ (15)
j=it1
Vi /\’Uk =0 (16)

where i € m, k, [ € n, k > [ and k # ' is assumed. Remenber that the ¢ of [Ha2]
corresponds to the inverse of our ¢. The third relation does not occur in [Ha2| and indeed
we have

Lemma 11.1 Relation (15) is a consequence of (13) and (14).

PRrROOF: We use induction on m — ¢. The beginning y™d,, = yc,, follows directly from
Yy~ "¢y = y 'd,, by multiplication with y™*!. For i < m we use (14) and the induction
hypothesis to see that

yldi =y - (y‘1 — D)3y e + (v — 1) 20 )
=y e — ( — )Y T T T (= 1)

Since (y — 1) Z] “in Yy =y —y'"" we obtain (15). O
We set

v =0 Avg Ao A, iE T i={i, 0 and iy <y <. <y

In contrast to [02, section 7] we take the usual order < on n here for technical reasons.
A subset I C n ordered in that way will be called an ordered subset in the sequel.

Proposition 11.2 The set B := {v;| I C n} is an R-basis of A\g ().

ProoOF: The fact that the set is a set of I? -linear generators of /\p  (n) follows directly
from the relations. Linear independence is shown using the Diamond Lemma for Ring
Theory (cf. [Hal, p. 157]). The technical details can be found in Appendix 18.1. O

Ar,(n) is a graded algebra since the relations are homogeneous of degree two. A basis for
the r-th homogeneous summand A R, q(n, r) is given by the subset B, of B corresponding
to the set P(n,r) of subsets I C n having cardinality || = 7.

Proposition 11.3 Considered as elements of V&% the defining relations precisely span
the kernel of the endomorphism (3 — yid.
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PROOF: Denote the span of the relations by U. It is a matter of calculation to show
that

Blue Avi+q o Aok) = y(oe Ao+ g o Avg)
‘ Bloe Nvg) = y(og Aog)
Bly~'ci—ytdi— (y' = 1) Zj:iJrl dj) =y e —di+(y—1) Zj:i+1 d;

which is only hard in the last case. The technical details of that calculation can be found

in Appendix 18.3. From these equations and Lemma 11.1 we see that U is contained in
the kernel of (5 — yidye2).

To show the other inclusion we consider two free R submodules
Whi=(y;@v;|1<i<j<n), and W?:=(y;®u|l1<i<j<n),

of V®2. Now, there are two direct sum decompositions of R-modules V®? = W' @ U and
Ve =W @ W2 Let v be in the kernel of (3 — yidye2). We may write v = w; +u where
u € U and w; € W?. From the definition of 3 it follows that S(W1) C W?2. Consequently,
since 3(u) = yu there is a wy € W? such that (8 — yidye2)(v) = —yw; + wy. Thus,
(8 — yidye2)(v) = 0 implies wy; = 0, that isv € U. O

Proposition 11.4 A, (n,2) is an A% (n,2) comodule.

PrRoOOF: By the previous proposition we have to show that the kernel of g — yid is an
A= A% (n,2) subcomodule of V@2 Call this kernel U and let r € U. We must show
7(r) € A® U. By construction of A as universal coalgebra with the property that
and 7 are morphisms of the A-comodule V®? (see [02, section 2, definition of M(A)] and
equation (5) ff.) we see

yr(r) = 7(B(r)) = ida @ B(7(r)).

But this means id4 ® (8 — yid)(7(r)) = 0. Since A,U and Ay (n,2) are free R-modules
we may conclude 7(r) € A U. O

If B is a bialgebra and A an algebra that is a B-comodule we call A a B-comodule algebra
if multiplication as well as the embedding of the unit element are morphisms of comodules.
For example the tensor algebra 7 (V) = P, oy, V" over R with multiplication given on
homogeneous summands by

V . V®r ® V®S — V®T+s, V(Ui ® Uj) = Ui+j

and embedding
L R—= V() = zlro

isan A := A% ,(n)-comodule algebra, since (V®ida)o(7,®7) = 74,0V and (1®id4)oTg =
To ® . Here we have written 7. ® 75, 7,45, Tgr and 7y for the comodule structure maps of
Ver @ Ves verts R and V0, respectively.

Proposition 11.5 A, (n) is an Ay (n)-comodule algebra.
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PROOF: As pointed out above the tensor algebra 7 (V') over R has a natural structure of
an A% ,(n)-comodule algebra. Consequently by multiplicativity and the proof of Propo-
sition 11.4 the ideal generated by the kernel of 8 — yid is an A%  (n)-comodule. But this
is precisely the defining ideal of Ay (n) by Proposition 11.3. Thus Ay (n) inherits the
comodule algebra structure from 7 (V). O

Denote the comodule structure map of A, (n) by 74 : Ag,(n) = Ag,(n) ® AR (n).

Proposition 11.6 The coefficient functions of N\ (n,7) are given by

W)= Y v Ter(:])

IeP(n,r)

wherei = (i1,...,4,) andj = (ji, ..., jr) are the multi-indices corresponding to the ordered
subsets I :={iy,... i} and J = {j1,...,Jr}, respectively.

Let us first treat the ingredients needed in the proof of Proposition 11.6.

Lemma 11.7 Let m, : V¥ — Ay (n,7) be the natural projection. Then the endomor-

phism Ky = Zwesk(—y)’l(“’)ﬂ(w) factors through =, i.e. there is a homomorphism of
R-modules v, : /\R’q(n, r) — V" such that k, = v, o m,.

PROOF:  Since the defining ideal of A (n) is generated by the kernel of (idye: —y~'/3)
by Proposition 11.3 the assertion immediately follows from Lemma 9.1. O

Let 15 = {i € I(n,7)| i1 < iz < ... < i,} be the set of multi-indices corresponding to
the ordered subsets I € P(n,r).

Lemma 11.8 Let F, be the R-linear span of {v;| j € I(n,r)\I5 } in V€. Then for all
w e S\{id} and i€ I3 it follows that B(w)(v;) € Fi.

ProOF: We use induction on r. The case r = 2 directly follows from the formulas

Bvwy) = quar (17)

i—1
Bloga) = via+y—1) Y ¢ vy (18)
j=1

which are valid for £k < [, kK #1'’ and i < m. If r > 2, we embed S,_; as the subgroup
of &, that fixes the letter r. If w € S,_1, there is nothing to prove since F,_1 @ V C F,.
Otherwise, we may write f(w) = S(w')B,—10,—2 ... 0, where w' € S, and [ < r — 1.

First consider the case where 7] is not contained in {i;41,...,4.}. Applying 5,_108.—2... [
to v; we only have to use (17) but not (18). Consequently, we have (5,_15,_2 ... (v;) =
q’”_lvil ..Uy, ... v;,v;,. Here, v, denotes the omission of v;,. This element obviously lies
in F,, proving the assertion in the case w’ = id. If w' is not the identity map we
have ﬁ(ly/)(qr_l“vil c Uy v 0;) € Froy @ v, C F, by the induction hypothesis since

(il,...7Zl,...,iT) € Ijril.
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We next consider the case i) € {ij41,...,4.}. This forces iy < m because i; < 7). Let
i) = i. As above, we have By o8k 3...3(vs) = ¢" oy, 0, Vi, Vi Vi, Vigoyy - - - Vi
Applying (r_1 to this expression, we have to use (18) for the first time. But for each
basis element v; occurring as a summand in the resulting expression we have j;, <7 < m.
Similar things happen concerning the remaining Sy, ..., 8,-1. Thus, for each v; occurring
as a summand in 5, 10,_2...5(v;), it follows that j,. <4, < m. On the other hand, for
each such summand there must exist an h < r where j, > m. This is because j must
contain a pair {i,7'} for some i € m, since this was the case for the multi-index i we
started with and [ either exchanges the position of such a pair or replaces it by a sum
where other such pairs occur in each summand. Consequently, we obtain j € F, in this
case too. O

Let the coefficient matrices of the R-module homomorphisms 7., %, and v, (from Lemma
11.7) be given by

E v, Ke(v5) = E kyvi and v (vy) = E V3 g V;.

IeP(n,r) icI(n,r) i€I(n,r)

Now, if j € I3 corresponds to the ordered set J € P(n,r) we have 7,(v;) = v; yielding
vij = Kyij by Lemma 11.7. From Lemma 11.8 it follows that ,(vj) = vj; modulo F,.. Thus,
for a pair i, j € I3 of multi-indices corresponding to ordered sets I, .J € P(n,r), we obtain
viy = Kij = 077 (Kronecker symbol). Finally, from k, = v, o m,. we see for all i € I and
jeI(n,r)

Rij = Z ViKTKj = T1j- (19)
KeP(n,r)
We are now ready to give the proof of Proposition 11.6. We calculate

Z Ukl/\-“/\UkT@xkj:

kel(n,r)
Z Z TkVr & Tkj = Z vy ® Z RikTkj-
kel(n,r) IEP(n,r) IeP(n,r) kel(n,r)
But, this is exactly what we wanted by the definition T;” (i : j) = &, (x5 of bideterminants.

The formula we just have proved has some useful consequences concerning the comulti-
plication and augmentation of A := A% (n). These are valid for any pair i,j € I3, of
multi-indices corresponding to ordered sets I,J € P(n,r) and follow directly with the
help of the comodule axioms (7 ® ida) o 74 = (idy ® A) o 75 and (idy ® €) o 74 = id:

ATer(i:§) =) Tyi-k)@Ter(k:j), (20)
(T (i:§)) = o (21)

Another useful consequence is the following corollary:

27
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Corollary 11.9 Let a; € R be such that Zje](n,v") a;v;, Nvj, A ... ANvj = 0. Then for all
i€ I(n,r) we have

Y oaTy(icg)= ) T (i) =0.

j€l(n,r) jel(n,r)

Proor: By Lemma 11.7 and the assumption we have
K ( Z avy) = Z ajkr(v3) = 0.
j€l(n,r) jel(n,r)

Consequently, for all k € I(n,r) we obtain ) | ajrkj = 0 and therefore

jel(n,r)
Z (leqwr<i J) = Z ajTikRkj = 0.
j€l(n,r) kjel(n,r)

*

The equation with exchanged indices is deduced by an application of the involution
according to (8). O

12 Proof of Proposition 8.4

First, we have to state the g-analogue of [O2, Lemma 8.1], one of the principal ingredients
in the proof of the symplectic straightening algorithm in the classical case. In order to
define the quantum analogue to the ideal N considered there we have to look in more
detail at the elements ¢; and d; defined in the previous section.

Relation (16) implies ¢; A d; = d; A ¢; = 0. Consequently we get from (14) and (15)

& =d;Ndy=(y—1) Z diNdj. and o= (y ' —1) Z ¢ N ¢ (22)
J=i+l j=i+1

This stands in remarkable contrast to the classical and even quantum linear case where
such expressions vanish. On the other hand by (13) and the above explanations all of
the the elements ¢; and d; commute pairwise with each other, exactly as in the classical
case. Consequently, they generate a commutative subalgebra of A R, q(n) and the elements
di :=dg, Ndg, N ... A\dy, are defined independently of the order of the elements of the
subset K := {kq,...,k,} € m. Again, we write P(m,a) for the collection of all subsets
K of m whose cardinality is a. Set

Da = Z dK

KeP(m,a)

and let NV be the ideal in A\, (n) generated by the elements Dy, Dy, ..., Dy,. We call an
ordered subset I € P(n,r) reverse symplectic if the multi-index iw obtained from I by
ordering its elements according to < (obtained from i by a suitable permutation w € S,
such that i,1) < i@ < ... < z'w(T)) is w,-reverse symplectic standard. Here w, is the
r-th fundamental weight.
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Proposition 12.1 Let I € P(n,r) be non reverse symplectic. Then, to each J € P(n,r)
such that the inequality f(j) < f(i) holds for the corresponding multi-indices i and j, there
exists ary € R such that in \g (n) the following congruence relation holds:

v = Z argjvg mod N.
JeP(n,r), f(§)<f()

Proposition 12.2 The semibialgebra (see Definition 8.1) A% (n) acts trivially on the
elements D,, that is TA(D,) = 0.

We postpone the very technical proofs of both propositions to separate sections below.

Let us prove Proposition 8.4 in the case A = w, first. Take j € I(n,r)\IJ*". Using
the weak part of the straightening algorithm 10.1, we may assume j € I, \I7¥. This
means j; < jo < ... < j,. In order to apply our lemmas we have to change orders from
< to <. Let w € S, be such that j,1) < Jwe) < ... < Ju@), that is, jw is a multi-
index corresponding to a non reverse symplectic ordered set J € P(n,r) in the sense of
Proposition 12.1. Application of this proposition to v; yields

X =vy;— Z a5k VK eN
KeP(n,r), f(k)<f(QJ)
since f(j) = f(jw). According to Proposition 12.2; the element 7,(X) must be zero.
Applying Proposition 11.6, we obtain the following equation holding in A\ (n,7) ® K:

Z v @ [T (i jw) — Z apT,;"(i: k) | =0.
IeP(n,r) KeP(n,r), k<j
Since {v7| I € P(n,r)} is abasis of A\ (n,r), each individual summand in the summation
over P(n,r) must be zero. Together with Corollary 9.12, this gives the desired result in
the case of multi-indices i corresponding to ordered subsets I € P(n,r), that is i € I3 .
The case for general i can be deduced from this using

Ter(ij) = > wnkTy(k:j),

KeP(n,r)

which follows from the formula x, = v, o m, of Lemma 11.7 together with (19).

Next we consider the general case of A\. Here, we can proceed exactly as in the classical
case. Again, we may assume j € I,\I}"" by the weak part of the straightening algorithm.
Let N = (p1,...,4p) be the dual partition (p = A;). We split j into p multi-indices
j' € I(n, ), where for each [ € p the entries of j' are taken from the I-th column of
TjA. The same thing can be done with i. Since j is not A-reverse symplectic standard but
standard there must be a column s such that j° is not w,, -reverse symplectic standard.
Applying the result to the known case of T, (i° : j*), we obtain

T g) =T (GO (57 - T (030 - T (2 )

= ape TG ) T (k) T ) = ) apTNi k).
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The element k® € I(n, u1,) satisfies k® <1j*, k € I(n,r) is constructed from j by replacing
the entries of j° by that of k® and ajx is the same as ajsyxs for the corresponding k°.
The product formula for bideterminants applied above is valid by our choice of basic
A-tableaux inserting the numbers 1,...,7 column by column top down (otherwise the
non-commutativity of A%  (n) would cause some trouble). From (11) we see k </j and the
proof of 8.4 is completed.

13 Proof of Proposition 12.1

For convenience, in in the following sections we abbreviate y = ¢? and denote multiplica-
tion in A\  (n) by juxtaposition instead of A. Furthermore, to sets K, L C m we associate
integers

WK, L) = |{(k,1) € K x L| k> 1}].

Lemma 13.1 Let a € m. If m = LU M s a partition of m into disjoint subsets L and
M then to each K € P(m,a) there is an integer s(K, L) such that

D, = Z yS(K’L)CKdeKmM-
KeP(m,a)

If K C M, the integer s(K, L) equals v(K, L).

SKETCH OF PROOF: In order to prove this, one has to use a more general statement in
which the set m is substituted by {l,/ +1,...,m} for some | € m. After this, the results
can be proved straightforwardly using induction on m — [ and the relations (14) and (15)
of the exterior algebra. For the details we refer to appendix 18.3. O

To a set I € P(n,r) we associate the followng subsets of m:
I":=Inm, IT:={icm|iel} and [°:=1 NIT.

Lemma 13.2 Let I € P(n,r) be such that I° = () and J C m. Set s = |J| and T :=
m\(I~UI"). If JC T and a € m is such that s < a then we have

vIdJDa—s = Z yU(S\JJJrUJ)dS.

SeP(m,a),JCSCT

PrRoOOF: We apply Lemma 13.1 to L := [TUJ and M := m\ L. Since J C T there is an in-
vertible element b € R such that v;d; = bdjv; by (13). We claim that v;djcxnrdgnn van-
ishes for each K € P(m,a — s) that is not contained in T\ J. If KNJ # 0 then d jcxnr = 0.
If KNIt # (0 and KNJ = 0 then v;djcxnr, = vicgnrdy = 0. The only other possibility is
K Q M, KniI~ 7A @ and KNJ = @, in which case UIdJCKﬂLdKﬂM = UIdKﬂMdJCKﬂL =0.
Thus the expression is nonzero only if K C T\J. A set K C T'\J is obviously contained
in M, so by the second part of Lemma 13.1 we have s(K, L) = v(K,L) = v(K,IT U J).
Thus, setting S = J U K the assertion follows. O
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Lemma 13.3 Let M C K Cm be fired. Then

1 K=M
_ 1)Ll p(EL)

LCK\M

PrOOF: Clearly the sum is 1 if K = M since v(K,()) = 0. For K # M we show by
induction on n := |K| > 0 that the sum is zero. Starting with the case n = 1 we have
M =0 and Y o (—1)Flyr L) — o0 —ypUGK) — 1 — 1 — 0. For the induction step,

let n > 1,7 € K be minimal and set K := K\z. If ¢ ¢ M we calculate

Z (= 1)y n) — Z (—1) e o Z )IEFLy e L)),

LCK\M LCR\M LCK\M

Since z is minimal, v(K, L) = v(K, L) and v(K, LU{z}) = v(K,L)+n—1if L C K\M.
Now, we may apply the induction hypothesis to K which results in

D0 (MU = 1y 3T (1) Hy D =0

LCK\M LCE\M

In the case z € M, we write M := M\{z}. Similarly, we calculate

Z (—1)Elyrlr) — Z (—1)Elyr (L),

LCK\M LCR\M

where the right hand side is zero by the induction hypothesis. O

Lemma 13.4 Let I € P(n,r) with r > m and set a = |I°, T := I\{i,i'| i € I°} and
T :=m\(ITUI"). Then there is an invertible a; € R such that the following equation
holds:

§ : J J(I)tuJ
vy ‘ | ) )dJD —|J| = ajyvr.
JCT

PROOF: Let T =T UI° = m\((I)* U (I)7) and observe that (I)* = I't\I°, (I)° = 0,
(I)* NJ =0 and that TN I° = (. Because r > m, we must have a > 1. On the other
hand 2a + |I] = r > m implies a > m — |I| — |I°] = |T| > |J| for a set J as in the sum.
Therefore we may apply Lemma 13.2:

Ve Z |J| o( U, D, = UTZ(_l)\ﬂyv(J,(f)"'UJ) Z yv(S\J,(f)+uJ)dS

JCT JET SeP(m,a),JCSCT

= v; Z (—=1)VlypS.N+(S.DH) g

JCSCT,JNI9=0

A I Rl M S L

ScT JCS\I0
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But by Lemma 13.3, the last term equals yv(107f+)vfd[0. Using relation (13) of the exterior
algebra, this can be transformed into v; up to some invertible mutiple a;. O

We are now able to prove Proposition 12.1 by induction on the Lie rank m. In the case
where m = 1 both sets of P(2,1) = {{1},{2}} are reverse symplectic. In P(2,2) there is
just one set, namely I = {1,2}, for which we have v; = —qd; = —¢D; € N. Thus there
is nothing to prove here.

For the induction step we embed AR (n—2) into Ay (n) sending v; to vy It is easy to
check that this indeed leads to an embedding of algebras. Using the induction hypothesis
we may treat the case where I C n\{1,n} without much effort. Some caution is needed
only concerning the difference between the two ideals N of Ay (n —2) and Ap (n).
Denote them by N(n — 2) and N(n). A single element u € N(n — 2) can be written

u= Z az;vr, mod N(n)
{1,n}CLCn

where the basis elements vy, all are smaller than vy, that is f(1) < f(i) for the correspond-
ing multi-indices. If 7 N {1,n} # () we may apply the induction hypothesis to the set
I:=I\{1,n} in case I is non reverse symplectic too:

Z a;sv7 + Z af; v, mod N(n).

JCn\{1,n}, [T1=|T], fG)<f() {1n}CLCn

vt

Again, the second sum compensate for the difference between the two ideals N(n — 2)
and N(n). Multiplying this congruence by v; from the left (respectively by v, from the
right, respectively by both from both sides) yields the assertion because the elements vy,

vanish, and f(j) < f(i) implies f(j) < f(i), where j is the multi-index attached to the set
J=JU{\I).

It remains to prove the assertion in the case where T is reverse symplectic. Here we need
the preparations of this section. By the reverse symplectic condition applied to tableaux
of shape w, we have ) )" . \; <m—j+1forall j > 1, where (A1,...,\,) = f(i). Because
I itself is non reverse symplectic we must have r = |I| = ", A\; > m. According to
Lemma 13.4 we conclude v; € N. But this implies the assertion of Proposition 12.1 in
the remaining case too.

14 Proof of Proposition 12.2

In order to prove the proposition we have to consider generalizations of the elements
Dy, ..., D,,, which are defined for any | < m by

Da7l = Z dK

KeP(l,a)

For a positive integer k, define the y~'-integer {k},-1 :==1+y ' +y2+...+y " € R.
Lemma 14.1 Let a € m. Then we have

D1yDyy = {a+1},-1Dgq1,



Symplectic q-Schur Algebras 33
modulo the ideal spanned by D, .

PROOF: Using the above introduced notations we may write the right hand side
of (22) as df = (y —1)>",  did;. Since 31", di + d; + D1y = Dy, we deduce
d? = (y' —1)d;Dy; 1 modulo Dy if I > 1 and d? = 0 modulo D; in the case [ = 1.

We proceed by induction on [. If [ = 1, both sides are zero if a > 1. In the case a = 1 we
have to show that d? = 0 which was proved above.

For the induction step we write Dy ; = djDg—1,-1 + D, —1 and obtain

Dl,lDa,l:dlzDa 1i—1 + d1Dgy—1 + Dy j—1(diDg—11-1 + Day—1)
= ((y' = D{a}y + 1+ {a}ty-1)diDay1 +{a+1}~1 D141

Since (y~' —1){a},~+ + 1+ {a},~+ = {a+ 1},-1, the lemma follows. O

We introduce some new conventions. To an ordered subset J = {j1,Ja,...,Ja} C m we
define corresponding multi-indices by

.]-2< = (jlajiuj%j;)' o 7ja7j¢/z)> .]2< = (jhj%' .. 7ja7j¢/17j¢,7,—17- .. 7]1)

Furthermore, we write

==
jed
From the definition of d;, we have d; = ¢"/vjz. By the relations of the exterior algebra

there is another integer a; such that vz = ¢*/vj2. By Proposition 11.6 and Corollary
11.9 we calculate

(dJ Z un+QJU ®Tw2a(1 J< Z qUJU ®Tw2a(1 .]{)

IeP(n,2a) IeP(n,2a)

Setting

1,l,a = Z qUJTWQa i: .]-<)

JeP(l,a)

we may write 7A(D,) = ZIGP(n 20y VI ® Gima- Since the vy form a free basis of the
comodule the following proposition holds:

Proposition 14.2 Proposition 12.2 holds if and only if Gima =0 for allie€ I(n,r) and
a € m.

We will prove the equation Gj,,, = 0 with the help of the Laplace-Expansion which is a
special case of Laplace-Duality (Proposition 9.7) applied to the partitions

)\tI:(T—t+1, 1717"'71 )GAJr(t’T)
~—

(t — 1)-times

where 1 <t <r.
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Caution: The symbol should not be confused with the ¢-th component of a partition .
A bideterminant Tq’\t(i : j) is the product of a t x ¢ minor determinant with a monomial,
that is

At(3 .3 — Twe (s ARNET] 1 L S .
T 3) =T (i) 2 (s o5 J6))Tirsr e Tivpngesn - - - Tings
Tivjr " Liggy

Liy1gep1Cispogirs - - LTipges
Ligjr 0 Tigj
in particular, A, = w;,.

Let L; denote the set of distinguished left coset representatives of Sy, in Sy,. Using
basic transpositions s; this set can be written down explicitly:

Lt = {ld, St—1,5t—25t—15.-.,5152... Stfl}.

Setting

= 3 (=)™ B(w)

weLy

the quantum symplectic (left) Laplace-Expansion deduced from Proposition 9.7 reads

Proposition 14.3 (Laplace-Expansion) By use of the above introduced notation the
following equation is valid:

AT (i) = T ).

In the classical case and t = r this turns out to be the familar Laplace-Expansion. There
is a very useful recursive calculation rule for the endomorphisms yi;:

—y B = 1 — idyer. (23)

Before we state the fundamental lemma of this section we remind the reader of the addition
of multi-indices, for example j2 + (k&) = (j1, 41, - - - Ja» oy ks k).

Lemma 14.4 Letl,a € m and i€ I(n,2a). Then

Gita= >, ¢V (152 + (kK)) L (id =y Baacr).

JEP(l,a—1),kel

PROOF: First we treat the case where a = 1. Here we have G;; 1 = 22:1 q 7T (i (55)
by definition. Since P(I,0) = () the summation on the right hand side of the lemma is
over k € [ too. Furthermore,

TH (i (kK)) (id =y~ ' B1) = zigswiw L (id —y~ ' 81) = T22(i : (kK)).
Thus both sides of the equation are identical.

For the general case we use induction on [. In the case [ = 1 we necessarily have a = 1,
which has been treated above. In order to prove the induction step we may assume a > 1
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and [ > 1. We divide the summation on the right hand side into three subsums:
(A)ledJ B)l&J, k=1 C)lgJ k<l

and write > ,, >, and ), respectively. First we treat subsum ) ,. Using Lemma 4.2
we see

—k k—21
E q xiga_lkfcmakfng 4" Tigy 1k Tingk

kel kel

and therefore
Do T (RK)) B = Y T (0§ (KR))
kel kel

If J € P(l,a— 1) contains [, we may write J = J U {I} with some J € P(I—1,a — 2)
such that for the corresponding multi-index j we have

. . 2a—1(37 - /'\2
Tre1 (i 32 + (kK)) = T (i: (§) + (IWkK')).

We obtain:

So= > TR P  (WRK)) (i — g Baa)
A JeP(l-1,a—2),k€l
= Z un—k—qu)\za—l(i ,]_2< + (ll/kk/>> . y—aun+k—3qu)\2a_1(i .]-2< + (ll/k/k‘))
JeP(l-1,a—2),kel—1

+q7( Z g (1§24 (W) =y g T (i %+ (1)), (24)
JeP(l-1,a—2)

The bideterminant 7:*=*(i : j% + (1I''l)) vanishes by Corollary 9.2. Unfortunately the
bideterminant with ({I'll") is not zero in general. Since D; € N we have

(y—1) Z dkE—(y—l)de mod N

k=141

and a routine calculation using relation (14) of the exterior algebra shows the congruence
relation

-1
d=y"'-1) de +y~'¢; mod N.
k=1
By Corollary 11.9 we obtain
-1
T (i R () = (y™' = 1) D g T G+ (RR). (25)
k=1

Note that the term involving ¢; vanishes by Corollary 9.2. Since ﬁga,lﬁza,g(vﬁ k) =

qzvjiﬂk/”/k) and ﬁ;ll_lﬁ;ll_Q(vjink/w)) = q_zvjiﬂkwk/) by (17) we may again deduce from
Corollary 11.9 that
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Tq)\za—l (1 Ji + (ll'kk’)) = TH2a-1 (1 Ji + (kk/ll/)) 2ﬁ27a1_1627al_2

q

T (52 3%+ (UKR)) = T (2 324 (KEIL)) 2 B B (26)

q

Here, in addition, we have used the equations vy = q2v(k/ul) and vy = q_QU(M/)
which are valid inside the exterior algebra. Modulo the ideal Gy, of A, generated by ~
the congruence relation 7' = (y~ '8+ (y~* — 1)id) holds by (1). Therefore, modulo this
ideal the congruence

Boa1Boao =y *Boa—1B2a—a + 4y (Y " = 1) (Boae1 + Bra2) + (" — 1)%id

is valid which implies

T+ (W) G5By = T 5 2 o (RRI)) 2 B s

+y Nyt = DT (G G+ (REU)) 2 Baan

— (Y = )T (E R (RE)). (27)
by Lemma 9.3. Here we have also used the fact that Tq’\Qa‘l(i 3%+ (RK)) U Bran =
_qu\zrl(i . ji + (kK'll")) by Lemma 9.4 since sg,—2 € Sy, /- Now substitute (27) into
the first equation of (26) and the equations (26) and (25) into (24). Note that the terms

coming from (25) and the last term of (27) cancel each other. We obtain the following
expression for the subsum (A).

XA: JeP(l—l,g—:Q),kzel—l[
?J_2qu"_k_qu/\2“71(i 3% 4 (KK'1)) 2 Bra—12a—2
—y_aquﬁk_ng;\%*l(i 3% 4 (KEI) 2 Bra—1P2a—2
Hy =y g (1 2+ (REU)) 2 Baal. (28)

Now we apply Laplace-Expansion (Proposition 14.3) twice to the first and second bide-
terminant and once to the third:

T2 (i 5%+ (RKU) = paa1ptaa—o VT2 (i 2 2 + (RE'ID))
T2 (12 2+ (KRI)) = ooy jtaa—a VL2~ (10 32 + (KEIL))
T2t (2 32 4 (WKL) = o VT2 (32 2+ (WKL) (29)

Note that we may commute the (,_124_2 from the right of Tq’\%*(i D j2 + (KK')) to
the left by (5), since a bideterminant corresponding to the partition A, 3 is a monomial
on the part where (5, 1 and (9, o are operating. A similar fact is true concerning the
bideterminant 77**¢~2(i : j2 + (kk'll')) with respect to Aya—s and (1. Furthermore, note
that by Lemma 4.2 for fixed J and arbitrary i € I(n,r) we have

1—

—_

-1
(DT R = 3 T3 ()
k=1

i

1
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Thus the second term of the right hand side in (28) can be replaced by

—(a—1),,—2 us—k—I

Y Y g T phoa—1h2a—252a—1B2a—2 2 T,;\Q“_3(i L2 4 (KK'1)) 2 Boa—s,

since the summation from k£ = 1 to [ — 1 equalizes both terms. Observe that after these
operations the first and second term of (28) only differ by the factor —y (@Y 3,,_5 so
that these both summands can be factored by (id — y_(“_l)ﬁga_g) (with respect to the
symbol). Applying (29), substituting these equations into (28) and commuting [5,_1 and
Baa_2 to the left of the corresponding bideterminant as explained above we obtain

SR SIPE
A JeP(l—1,a—-2)kel—1

y_2u2a—1u2a—252a—1ﬁza—2ZT(;\QE“?’(i iji + (kK1) 2 (id — y_(a_l)ﬁm—:s)

+y (Y = Ditgant Boami?>2(1 1 j2 + (KKU))).
Note that the doubled use of ¢ is well defined by the last line of (3). To the first term of
that sum we can apply the induction hypothesis. To this claim note that the symbol @ on
the left of the bideterminant stands for a sum over the bideterminant’s left multi-index.
In order to apply the induction hypothesis this summation has to be commuted with
the summation under the ) -symbol. Similarly we can apply Lemma 14.1 together with
Corollary 11.9 to the second term of the sum above in the following way: By Lemma

14.1 we can write Dy_9;-1D1;-1 = {a — 1},-1D,_1,-1 modulo the ideal spanned by D;.
Therefore, by Corollary 11.9 together with Proposition 4.3 we have

> Zq T2+ (R = Y {a— 1}, aT (R4 (1) + D
JeP(l—-1,a—2) JeP(l-1,a—1)

for some D € (d,). Since D = 0 inside A3 (n) this results in

Z Z qujil(y72,u2a71;u2a7252a7152a72 2 Tq)\2a72 (i : Ji + (ll/>>

JeP(l-1,a—1)
+y T = D{a— 119010001 VT2 (12 32 4 (1)),

Since fia,—2 and [,_1 commute, we see from equation (23)
Y 20— 1H2a—202a-182a—2 = (=Y t2a-1320-1) (=Y 12a—202a—2) = (H2a — id)(tige—1 — id).
Similarly we calculate using (23) again
Tyt -D{a—1 = (1 -y —id
Yy (y Ha }y*1/$2a_152a—1 = ( Y )(poq — id).

Finally we obtain the following expression for the subsum (A):

Z Z QUJ (N2a,u2afl — HU2q—1 — yi(ail) (,u2a - ld)) ! Tq/\Qa72 (1 : ji)

JeP(l,a),led

The calculation of subsum (B) only needs one application of Laplace-Expansion together
with the commutation of (5, 1 from the right of the bideterminant to the left and another
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application of (23).

So= Y TR i~y Bea)

B JeP(la)leJ
= Z q" (f12a—1 + y_(“_l)(um —id))? Tq/\QMQ(i L 32).
JeP(l,a),led
Thus subsum (A) and (B) together equal
ED SR SN R R I B
A B JeP(l,a),le] JeP(la),led

where for the second step Proposition 14.3 is used once more. To the subsum (C) the
induction hypothesis can be applied directly:

Z =Gij-10 = Z qu‘]Tq/\%(i 3ji)-
c

JeP(l—1,a)
Thus, it follows that all three subsums add up to Gj;4. O

Now we are able to prove Proposition 12.2. As we have seen in Proposition 14.2, we have
to show Gime = 0 fora =1,...,m and i € I(n,2a). From Proposition 4.3 we already
know Gimy = 0 for all i € I(n,2) since d; = 0 inside A}y (n). We will deduce the general
case by induction on a with the help of Lemma 14.4. Let ¢ > 1 and i € I(n,2a) be
arbitrary. We apply Laplace-Expansion to the formula of the lemma:

Gi7m,a = Z QUJ_k,MQQ—l zT;\2a72 (1 J_2< + (k’k’,)) ! (ld — y_aﬁga_l).
JeP(m,a—1),kem

As in the proof of the lemma we may commute (id — y~%fs,_1) to the other side of
the bideterminant. Let (ftin);pe I(n2a) D€ the coefficient matrix of the endomorphism

foq—1(id — y~%Faq_1) with respect to the canonical basis. We denote the multi-index
consisting of the first 2a — 2 indices of h by h := (hq, ..., ha,_2) and obtain

Gi,m,a = Z Hin Z unT;JQa_Q (l_l : Ji) Z q_kxhza—1kxh2ak’

hel(n,2a) JeP(m,a—1) k=1
m
-k
= E MihGB,m,a—lg 4 "Thyy 1 kTho,kr = 0,
hel(n,2a) k=1

since G, o1 = 0 for all h € I(n, 2a) by the induction hypothesis.

Remark 14.5 The proof of the classical version [O2, Proposition 8.2] of Proposition
12.2 relies on the embedding of the symplectic monoid SpM,, (R) into the ring M,,(R) of
n X n-matrices. Since in the quantum case such an embedding is missing the proof given
here is absolutely incomparable to the one given in [O2, Proposition 8.2]. Additionally
the statement of the latter proposition is a little bit stronger although this is not really
needed. It is a good exercise to work out a classical version of the current section in
order to understand the ideas of the proof. The result will be a simplification of the
corresponding classical treatment in [O2].

Remark 14.6 Lemma 14.4 is the fundamental key to remove the restrictions from [O1,
Basissatz 3.14.12] and [O1, Satz 4.1.2] in Theorem 7.1 and Theorem 7.3.
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15 Finishing the proof of Theorem 7.1

Let us briefly recall what we have done so far. With respect to the proof that B, is a
basis, we have reduced the fact that it is a set of generators in section 8 to the verification
of Proposition 8.2, which we just have completed. Furthermore we already know from
section 6 that the axiom (C2*) of a cellular coalgebra is valid. It remains to show axiom
(C3*) and the fact that B, is linearly independent.

Let us start with the latter task. It is clearly enough to consider the case where R =
Z = Z|q,q7']. Let K be the field of fractions of Z and let ¢ be the image of ¢ un-
der the embedding of Z into K. Any relation among elements of B, with coefficients
from Z is a relation with coefficients from the field K too. Thus, we only have to show
IB,| = dimg Ai (n,7r). Now, Ax (n,r) is the centralizer coalgebra of the algebra A,
generated by the endomorphisms (; and ~; acting on V" in the sense of [02, Section 2].
Consequently, by the comparison theorem [O2, Theorem 3.3] the dimension in question
is the same as the dimension of the centralizer algebra of A, acting on V",

The latter dimension can be deduced from well-known results from the theory of quantum
groups. We will use [CP, Theorem 10.2.5 ii, second statement]. The operator called I*!
there equals our € !f3;, thus eI = 3;. The application of the theorem shows that the
centralizer of our algebra A, is identical to the image of the quantized universal enveloping
algebra (QUE) corresponding to the Dynkin diagram C,, under its action on V®". Now,
by [CP, Proposition 10.1.13 and Theorem 10.1.14], the tensor space V" decomposes into
irreducibles as a QUE-module because € € K is transcendental over Q . These irreducibles
are indexed by the highest weights of the symplectic group and their dimensions are the
same as in the classical case. The weights occurring are the same as for the symplectic
group as well and correspond precisely to the elements of the set A from the definition of
B, (cf. [02,7.1]). It follows from work of R.C. King that the dimensions of the irreducibles
are just |[M(N)| ([Ki], cf. [Do2]). Consequently, we obtain the required identity:

dimg Ay (n,r) =) [MNF = [B,].
AEA

Remark 15.1 The approach to the symplectic g-Schur algebra using the quantized uni-
versal enveloping algebra as outlined above has been investigated in [Dt2]. There, another
cellular basis has been constructed (see [Dt2, 5.2 and 7.3]).

We now verify axiom (C3*). We abbreviate K = A% (n,7). Let D%J € B, where
A= (\Il) € ANandije M(N). As dé is grouplike and A a homomorphism of algebras
we calculate using (20) that

ADY) = (d) @ d)A(TNMi:§) = > Dy, ® Dy

hel$

Here, as in section 11, I7 is the set of multi-indices that are A-column-standard with
respect to the usual order < on n (see section 8). Now, according to the straightening
formula 8.2 (after application of *) to each h € I and k € M(\) there is an element
apx € R (unique by the linear independence of B,.) such that
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Dp;= Y amDy; mod K(>)). (30)
keM(N)
We set
h(k,i):= > Dijamc € K(>))
helg
and obtain

A
A(DY)

> h(k,i)® Dy mod K(> ) @K(> ).
keM ()

This completes the verification of axiom (C3*) and hence the proof of Theorem 7.1.

16 Quasi-Heredity of the Symplectic g-Schur Alge-
bra

In [GL] Graham and Lehrer have presented a nice criterion for quasi-heridity of a cellular
algebra which we will now verify in our case. This will prove Theorem 7.5.

To this aim we have to investigate the bilinear form ¢, on the standard modules W ().
We must show that they are not zero ([GL, 3.10]). Let us first calculate the Gram matrix
of ¢, with respect to the basis {C3| i € M(A)} of W(A). We abbreviate its entries by

¢ij = oa(CF, C'JA) € R. According to the definition in [GL, 2.3], these numbers satisfy
Oi%kcl%j = ¢k10%j mod Sp (n,7)(< A).

Such a congruence relation is valid with ¢y being independent of i and j by the axioms
of a cellular algebra (see [GL, 1.7]). Dualizing this congruence we obtain the following
counterpart in the cellular coalgebra K = A% (n,r):

A(D)

> aDiy® Dy
K1eM())
modulo (> A\) @ (> A) + £(> A) @ K(> A). According to the calculations for the
verification of axiom (C3*) in the previous section we see using the notations from there
that

Ox1 = Z Ahkahl- (31)

hels

The bilinear form ¢, is different from zero if this is the case for a single entry ¢ix. We
calculate ¢y where k is the A-tableau T = T with constant rows T(i,5) := m + i for
all 1 <7 <mand 1< j < \;. Obviously T is a standard tableau with respect to both
orders on n, namely < as well as <. Furthermore the reverse symplectic condition holds
because T'(i,j) = (m — ¢ + 1)’. Consequently we have k € M(A) N I5. Note that k does
not contain any pair of associated indices (i,4"). The content 1 := |k| of k is given by
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o 0 1 <m
=19\ :

i—m 1> M.

Consider the endomorphism

T = Z €ii € EndR(V®’”).

iel(n,r),lil=n

It is easy to see that 7 commutes with §; and ~; for all © = 1,...,r — 1. Consequently
it is an endomorphism of the A% (n,r) comodule V" (in fact it is the idempotent of

2.4(n,7) corresponding to the weight space with weight 7). There is an induced action
of 7 on A% (n,r) from the left defined by

Txi5 = (7 ® id)A(zy) = { ; |1I 7__£ 7

xi i

For a bideterminant we have

- 0 il # 7
TTrMi:j) = c e e ’
269={ Ty bl
Applying 7 to the deﬁning equation (30) of apx we see that ap, = 0 if |h| # 1 by linear
independence of D . Since k is the only element in I3 N M (A) having content 7 it follows
that apx = 0 if h 7é k and we conclude

2 2
Pk = g apk” = agk~ = 1.

hely

By [GL, Remark 3.10], this finishes the proof of Theorem 7.5.

17 Outlook

Dualizing the coalgebra map A%  (n,7 — 2) =yt Rq(n,7) from the sequence (9), one ob-

tains an epimorphism of algebras from S;(n,r) to S;(n,7 —2). On a basis element C’%J
it is given by subtracting 1 from [ in A = (A,[) and keeping i,j fixed. Its kernel is the
linear span of those basis elements which occur in the case [ = 0. This forces a recursive
structure on the representation theory of these algebras in a similar way as is known for
the Birman-Murakami-Wenzl algebras (see [BW]). In addition these epimorphisms can
be used to define an inverse limit of the symplectic ¢-Schur algebras in a similar way as
has been worked out for the type A ¢-Schur algebra in [GR, section 6.4]. It seems to
be plausible that accordingly the quantized universal enveloping algebra embeds into this
inverse limit (cf. [Dt2, 7.3]).

Concerning analogues to the orthogonal case, note that Lemma 11.7 will not work here.
Maybe, a way out is to consider coefficient functions of the symmetric algebra, i.e. the

elements
>y Bw) vy = Yy W Blw)

wWES) wWES)

instead of bideterminants, which are coefficient functions of the exterior algebra.
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18 Appendix: Technical Details

18.1 Details to the Proof of 11.2

With the help of the Diamond Lemma for Ring Theory [Bg] we will construct a free basis
for Ag,(n). Our order < on n induces a lexicographic order on multi-indices i € I(n,r)
and on the corresponding monomials v; € V" which will be denoted by the same symbol
<. On the monomials of 7 (V') we get an induced partial order if we declare monomials of
different degree to be incomparable. It is clear that < is compatible with the semigroup
structure of the set of monomials of 7 (V') as required in [Bg].

We now introduce a system of reductions of degree two in 7 (V) extracted from the
relations (13), (14) and (16) of the exterior algebra and divide them accordingly into
three types. As in [Bg] we write them as pairs consisting of a monomial and a substitution
expression:

(R1) (viv;, —q U~ Du0)) N if <, i
(R2) (Ui’via —q72’Uﬂ)i/ — (qiz — ]_) Z;n:i—i-l q’fjvjvj/) if 1 S 1 S m

Since all monomials of the reduction system are greater than the monomials in the cor-
responding substitution expressions our partial order < on 7 (V') is compatible with the
reduction system.

The set of monomials in V®" which do not contain any monomial of the reduction system
as a subexpression clearly is

Fr = {Uili:(il,...,iT) E[(n,'r’), ’il < ... ‘<Z7«}

Obviously F, generates the r-th homogeneous summand /\ R, q(n, r) of the exterior algebra
as an R-module. To see that these sets are linearly independent we must show that all
ambiguities of the reduction system are resolvable. Since all monomials are of degree two
only overlap ambiguities occur and we can reduce to the case of degree three. Ambigu-
ities between reductions of type (R3) are trivially resolvable and such ones where both
reductions are of type (R2) do not occur. Thus we have to handle the following remaining
cases:

1. Both reductions are of type (R1):
v;v;vp where k < j < i and i # j' # k.

2. Ambiguities between (R1) and (R3):
(a) v;v;v; where j < i and ¢ # j'
(b) v;v;v; where ¢ < j and @ # j’

3. Ambiguities between (R2) and (R3):
(a) vyv;v; where 1 <7 <'m
(b) vpvyv; where 1 < i <'m

4. Ambiguities between (R1) and (R2):
(a) vvjv; where j/ <iand 1 <j<m
(b) vyvju; where i < jand 1 <7 <m
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In order to prove resolvability of these ambiguities we will write an application of a
reduction as: monomial — substitution expression. The first case can be solved in the
following way beginning with reduction of the left hand side pair

sign(j—i sign(j—1i)-+sign(k—i sign(j—i)+sign(k—i)+sign(k—j
ViV > — 8 G )Ujvivk s goien(i—0)+sign( )Ujvkvi — —goEnU ) +sign(k—i)Fsign( ])Uk’Ujvi,

and then begining with the right hand side pair

sign(k—1)+sign(k—j) sign(j—i)+sign(k—i)+sign(k—j)

Vv — — ¢ 8 F D05 - g VRpUVj = —q VRV;jV;.
The treatment of case 2 is very easy and does not need to be written down. In order to
treat case 3 (a) we have to show that starting with a reduction of type (R2) on the left
hand side pair finally reduces to zero.
vpvii = —q e — (¢ = 1) 3 ¢ o
— —q72(—q72UiUiUi/ — (qiz — 1) ZT:H—I qzi]UinUjJ
- . e ien(i
—(07 =D X O ooy
— — m —
= q Q(Q 2 — 1) Zj:i—H q v
_(q—2 . 1) Zm - qi—j+sign(i—j/)+sign(i—j),Uivjvj/ —0.
Jj=ti

Part (b) of case 3 is similar and we can proceed to case 4. Condition j' < ¢ means
that i < j (the case i = j has been treated above) or ¢ > j whereas i < j means that
j <1 < j'. Note that in general a < b implies a < &’. As above we reduce begining with
the left hand side pair in (a)

o
VUV s — g 2sien( ) dsien( =0y g0y,

(=2 m j—k+sign(j’—i)+sign(j—i .

(=12 ¢ ( U=Duguprv;.

and then beginning with the right hand side pair

o
VUUf s — g 2sienl ) dsien( =0, g0y,
-2 m j—k+sign(k’—1t)+sign(k—i
(=D gDy op;,

Since j < k and in addition i < j or ¢ > j we have sign(j’ — i) = sign(k’ — i) and
sign(j — i) = sign(k — i). Thus both reductions lead to the same expression. Turning
to part (b) the calculation of both reductions lead to similar expressions but we have to
divide the sum into a i < k and a k < ¢ section. First we begin with the left hand side
pair in (b)

e
ViUV L — g 2Hsien(i—g )+Slgn(%—J)vinUj,
—(g72% — m J—k+sign(i—j')+sign(i—j),,.
(q 1) Zk:j+17i.<k q ( / ) ( )vzvkvk/
—(a~2 _ m Jj—k+sign(k’—1i)+sign(k—i )
(q 1) Zk:j+1,k<z‘ q (5= =D vpopv;

and then begining with the right hand side pair

oy _ —2+sign(i—j')+sign(i—75) 5y .0y 0.

—9 m “k
—((] - 1) § :k:‘j+17i<k ¢ v v
L k= e (s
(g7 = 1) Yop g sy @SR S g 0y

Since j < i < j' the expression sign(i — j) + sign(i — j’) is always zero. Thus both
reductions coincide and the proof is finished.
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18.2 Details to the Proof of 11.3

We have to verify the third equation listed in the proof. Let us first find suitable expres-
sions for B(¢;) and ((d;).

Ble) = q'Bvivi)
= ¢'(vwir + (y — Dvpvy = (y = 1) Yoy 47 eneiviti)
= —y'di+(y— Ve — (v — D' oyl ¢ Fowvw + 2000, =g Prugoy)
= —y'di+(y—1)(c+ yZ(ZZL:iH dy +y ! kazl cr))

Bldi) = —q'Blvve)

= —q '(vivi —(y—1) Zk 41 g e v U )
-y e+ (y—1)g™ L PR P oy,
—y e+ (y -y Z 11 Ck

Setting d = y~'c; —y~'d; — (y~' — 1) >_7., dj, we obtain

Bld)=—di+y ' (y— e+ (y— 1) de+ymlz k)

k=i+1 k=1

[y

11—

+y ety Ty 1) Ck

S ) Y e - )Y e 3

Let us focus attention on the summand displayed in the last line:

Z;n:i-i-l(_yijcj + yij(y 1) k 1 Ck;) = _(ZZL:HJ yikck) + (y )Z] —i+1 Zk 1Y ey,
The second summand in this expression can be transformed in the following way:

L
2 imin Sioiy e = Z] M(Zk 1Y JC/rI-ZfC:Z-g{ Iey) |
[ 1(21 i V7)o + 200 (e Ve

Thus:
(Z/ ) Z] =i+1 Z 1Y ]Ck = Zz:—li y_kck -y Zm_l y Zk 1Ck + y_z k 1 Ck
= ZZL:_Z yFep—y m2k10k+y Zk 1 Ck

= Z;n:iyi Zk 1k Ty Zk 1 Ck-

In order to get the last line one has to add y="¢,, — y~"¢,,. Substituting this result into
equation (32) yields

Bd)=—di+y e —y e+ (y—1) deﬂ/ =1 o

k=i+1 k=1
i—1 m
ty Gy DY a1 >yt
k=1 k=i+1
m i—1 m
—y My -0 -y Y =yt
k=1 k=1 k=1
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Now we see that almost all summands in this expression cancel each other and we end up
with
Blyta—yldi—(y ' =DX 0, d) = yHa—di+ -1 d;

18.3 Details to the Proof of 13.1

We prove a more general statement concerning elements D! ; defined similar to the ele-
ments D, ; of section 14. For the set of subsets K C m\l — 1 that have a elements we will
write P'(l,a). We set

- Y a4

KeP'(l,a)

We will need the following analogue to Lemma 14.1:
Lemma 18.1 Let a € m. Then we have

Dy Dy, ={a+1},D
where {k}, =1+y+vy*+...+y" 1 € R.

ProoF: We will prove this by induction on m —[. If [ = m, both sides are zero if a > 1.
In the case a = 1 we have to show that d2, = 0 which follows by (22).

For the induction step we write D}, = diD;,_, ;. + D, ,,, and D}, = d; + D, ,. Note
that df = dj(y —1)D};,,. We obtain

D},D,,=d;D, ;. +diDyy + D) l+1(dlDa e T D)
= ((y - 1){a}y +1+ {a}y)dl al+1 T {a+ l}y a+1,0+1"
Since (y — 1){a}, + 1+ {a}, = {a + 1}, the lemma follows. O

The more general statement of Lemma 13.1 reads:

Let a,l € m. If m\l — 1 = LU M is a partition of m\l — 1 into disjoint subsets L and M
then to each K € P'(l,a) there is an integer s(K, L,l) such that

D;l = Z yS(K’LJ)CKdeKnM-
KeP'(l,a)
We will prove this by induction on m — [ as well. If m =1 and @ > 1 then D! =0 and

thereisno K € P'(m,a). If a = 1 we have D} ,, = d,, and K = {m}. Thus S(K (Z) m) =0
and s(K,{m},m) =1 —m leads to a solution.

For the induction step we first consider the case [ € M and calculate

D(/z,l :dlD, 1,04+1 + Da 141

K.Li+1 s(K.Li+1
=d, g y* Vexnndinn + E T Jexnndinm
KeP/(I+1,a—1) KeP'(I4+1,a)

= Z y PP e dpeonr + Z y LI e rdieon,
KeP'(La)leK KeP!(La)lgK
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Setting s(K, L,1) := s(K\{l}, L,l + 1) leads to a solution. If I € L we apply relation (14)
of the exterior algebra to obtain

r / /

Da,l _dlDa—l,l+1 + Da7l+1
_ 11 ! / / /
=Yy ClDa—l,l+1 + (y — 1>D17l+1Da—l,l+1 + Da,l+1

From Lemma 18.1 we see that D}, D, ,,, = {a},D,;,,. Since (y — 1){a}, +1 =
y* we obtain D), = y'"'¢D)_ . + y*D,, . Thus, setting s(K,L,1) := 1 —1+
s(K\{l}, L\{l},l+1)ifl € K and s(K, L,l) := a+ s(K, L\{l},l + 1) otherwise leads to
a solution.

It remains to check that s(K,L,1) = v(K, L) if K C M. More generally we prove that
s(K,L,l) = (1 —=1)a+v(K,m\M)

by induction on m — [ again. If [ = m we must have K = {m} = M and L = (). In this
case both sides of the equation equal zero. For the induction step let us first consider the
case | € K. By the above calculation this gives

s(K,L,1) = s(K\{I}, L, 1+ 1) = (1 — (1 + 1))(a — 1) + v(E\{I}, m\M U {1})

Since v(K\{{},m\M U {l}) = v(K,m\M) + a — [ the assertion follows in the first case.
Next we consider [ € M\ K. Here we have

s(K,L,1)=s(K,L,l+1)=(1—(I4+1))a+v(K,m\M U{l})

and the assertion follows since v(K,m\M U {l}) = v(K,m\M) + a. Finally we have to
consider [ € L. From the calculation above we get

s(K,L,l) =a+ s(K,L\{l},|+ 1) =a+ (1 —({+1))a+ v(K,m\M)
which directly gives the result.
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