next up previous index
Next: Quantum Symplectic Bideterminants Up: symp Previous: Introduction   Index


Quantum Symplectic Monoids

Let $ {R}$ be a noetherian integral domain and $ {q}$$ \in R$ an invertible element. Let $ {V}$ be a free $ R$-module of rank $ n=2m$. Fix a basis $ \{v_{1}, \ldots , v_{n}\}$    and let $ e_{ij}$ denote the corresponding basis of matrix units for $ {{\cal E}}$$ :={\rm End}_{R}{(V)}$. We will define two endomorphisms $ {\beta}$ and $ {\gamma}$ on $ V\otimes V$ identifying $ {\rm End}_{R}{(V\otimes V)}$ with $ {\cal E}\otimes{\cal E}$ (we write simply $ \otimes$ instead of $ \otimes_{R}$ if no ambiguity can arise). Some additional notation is needed. We set

$\displaystyle (\rho_1, \ldots , \rho_n)=(m, m-1, \ldots, 1, -1,\ldots ,-(m-1),
-m)$   $\displaystyle \mbox{\index{${\rho_i}$}}$$\displaystyle $

and $ {\epsilon_i}$$ :=sign(\rho_i).$ Further, $ {i'}$$ :=n-i+1$ defines an involution on $ {\underline{n}}$$ :=\{1,\ldots ,
n\}$. Thus

$\displaystyle (1',2', \ldots , n')=(n,n-1, \ldots , 1). $

The following definition is taken from [Ha2, Equation (4.3),(4.5)] (resp. [Ha1, section 5]) using the transformation $ \beta=
q^2\beta_{q^{-1}}(C_m)$ and $ \gamma=\iota_q$.

$\displaystyle \beta:=\sum_{1\leq i\leq n} (q^2e_{ii} \otimes e_{ii}
+e_{ii'} \otimes
e_{i'i}) + q\sum_{1\leq i\neq j,j'\leq n} e_{ij} \otimes
e_{ji} + $

$\displaystyle +(q^2-1)\sum_{1\leq j < i\leq n} (e_{ii} \otimes e_{jj}
-q^{\rho_i -\rho_j}\epsilon_i\epsilon_j e_{ij'} \otimes
e_{i'j}),
$

and

$\displaystyle \gamma: =\sum_{1\leq i,j\leq n} q^{\rho_i -\rho_j}\epsilon_i\epsilon_j
e_{ij'} \otimes e_{i'j},
$

There are slightly more general versions of these endomorphisms involving additional parameters. We may omit them without loss of generality (see [O1, Satz 2.5.8]). The operators $ \beta$ and $ \gamma$ are related to each other by the equation (cf. [Ha2, Equation (4.4)])

$\displaystyle (q^2-1)(\gamma -{\rm id}_{V^{\otimes 2}})=q^2\beta^{-1} -\beta$ (1)

For $ r\in {\mathbb{N}}\,$ write $ \underline{r}:=\{1, \ldots , r\}$. A multi-index is a map $ {{\bf i}}$$ :\underline{r}\rightarrow \underline{n}$ frequently denoted as an $ r$-tuple $ {\bf i}=(i_1, \ldots , i_r)$ where $ i_j\in \underline{n}$. The set of all such multi-indices will be denoted by $ {I(n,r)}$. We define

$\displaystyle {v_{{\bf i}}}$$\displaystyle \mbox{\index{${v_{{\bf i}}}$}}$$\displaystyle :=v_{i_1}\otimes v_{i_2} \otimes \ldots \otimes
v_{i_r} \in \und...
...otimes V}_{
r\mbox{-times}}=: {V^{\otimes r}}\mbox{\index{${V^{\otimes r}}$}}.$

An endomorphism $ \mu$ of $ V^{\otimes r}$ may be given by its coefficients $ \mu_{{\bf i}{\bf j}}$ with respect to the basis $ \{ v_{{\bf i}}\vert\; {\bf i} \in I(n,r)\}$ of $ V^{\otimes r}$, that is

$\displaystyle \mu (v_{{\bf j}}) = \sum_{{\bf i}\in I(n,r)}\mu_{{\bf i}{\bf j}}v_{{\bf i}}. $

Let $ {F_{R}(n)}$$ :=R\langle X_{1 1},X_{1 2}, \ldots , X_{n n}\rangle$ be the free algebra generated by the $ n^2$ symbols $ X_{i j}$ for $ i,j \in
\underline{n}$. This is a graded algebra; an $ R$-basis of the $ r$-th homogeneous part $ F_{R}(n,r)$ is the set

$\displaystyle \{ X_{{\bf i} {\bf j}}:=X_{i_1 j_1}\cdots X_{i_2 j_2}\cdots
X_{i_r j_r}\vert\; \; {\bf i},{\bf j} \in I(n,r)\}. $

To simplify notation we introduce a new convention to write down frequently used elements of $ F_{R}(n)$ and its quotients in a convenient way. For an endomorphism $ \mu$ on $ V^{\otimes r}$ we write

$\displaystyle \mu \wr X_{{\bf i} {\bf j}} :=\sum_{{\bf k}\in I(n,r)}$   $\displaystyle \mbox{\index{${-\wr -}$}}$$\displaystyle \mu_{{\bf i}{\bf k}}X_{{\bf k} {\bf j}} \; \;$    and $\displaystyle \; \;
 X_{{\bf i} {\bf j}}\wr \mu :=\sum_{{\bf k}\in I(n,r)} X_{{\bf i} {\bf k}}\mu_{{\bf k}{\bf j}}.$ (2)

This definition can be linearly extended to all of $ F_{R}(n,r)$. The following rules are easily checked.

\begin{displaymath}\begin{array}{rl}
 1\wr X_{{\bf i} {\bf j}} & = X_{{\bf i} {\...
...})\wr \nu & = \nu\wr (X_{{\bf i} {\bf j}}\wr \nu )
 \end{array}\end{displaymath} (3)

We will denote the residue classes of $ X_{i j}$ in any quotient of $ F_{R}(n)$ by $ {x_{i j}}$. The residue class $ {x_{{\bf i} {\bf j}}}$ of $ {X_{{\bf i} {\bf j}}}$ then clearly has a similar expression in the $ x_{i j}$ as the $ X_{{\bf i} {\bf j}}$ do in the $ X_{i j}$. The above introduced convention will be used for $ x_{{\bf i} {\bf j}}$ accordingly.

The object of our investigations is given by the following definition:

$\displaystyle {A^{{\rm s}}_{R,q}(n)}$$\displaystyle \mbox{\index{${A^{{\rm s}}_{R,q}(n)}$}}$$\displaystyle :=
F_{R}(n)/\left< \beta\wr X_{{\bf i} {\bf j}}-X_{{\bf i} {\bf ...
...}}-X_{{\bf i} {\bf j}}\wr \gamma \vert\; \; {\bf i},{\bf j} \in I(n,2)\right>. $

Here the brackets $ \langle\rangle$ denote the ideal generated by the enclosed elements and $ \beta, \gamma$ are the endomorphisms on $ V\otimes V$ defined above. Since this ideal in the definition is homogeneous, the algebra $ A^{{\rm s}}_{R,q}(n)=\bigoplus_{r\in {\mathbb{N}}\,_0} A^{{\rm s}}_{R,q}(n,r)$ is again graded. Here, $ { A^{{\rm s}}_{R,q}(n,r)}$ is the $ R$-linear span of the elements $ x_{{\bf i} {\bf j}}$ for $ {\bf i},{\bf j}\in I(n,r)$. The algebra $ A^{{\rm s}}_{R,q}(n)$ can be identified with a generalized $ FRT$-construction with respect to the subset $ N:=\{\beta, \gamma\} \subseteq {\cal E}\otimes {\cal E}$ denoted $ {\cal M}_{R}(N)$ in [O2, section 5]. It has been pointed out there that it possesses the structure of a bialgebra where comultiplication and augmentation on the generators $ x_{{\bf i} {\bf j}}$ are given by

$\displaystyle \Delta$   $\displaystyle \mbox{\index{${\Delta (-)}$}}$$\displaystyle (x_{{\bf i} {\bf j}})=\sum_{{\bf k}\in I(n,r)} 
 x_{{\bf i} {\bf k}} \otimes x_{{\bf k} {\bf j}} ,\; \; \epsilon$   $\displaystyle \mbox{\index{${\epsilon (-) }$}}$$\displaystyle (x_{{\bf i} {\bf j}})
 =\delta_{{\bf i}{\bf j}}.$ (4)

In particular, the homogeneous summands $ A^{{\rm s}}_{R,q}(n,r)$ are subcoalgebras. Furthermore, the tensor space $ V^{\otimes r}$ is an $ A^{{\rm s}}_{R,q}(n)$ (resp. $ A^{{\rm s}}_{R,q}(n,r)$)-(right-)comodule. The structure map $ \tau_{r}:V^{\otimes r}\rightarrow V^{\otimes r}\otimes A^{{\rm s}}_{R,q}(n,r)$ is defined by

$\displaystyle \tau_{r} (v_{{\bf j}})=\sum_{{\bf i}\in I(n,r)}
v_{{\bf i}}\otimes x_{{\bf i} {\bf j}}. $

Now, if $ q^2-1$ is an invertible element in $ R$, the endomorphism $ \gamma$ is known to be in the algebraic span of $ \beta$; explicitly one has

$\displaystyle \gamma=\frac{q^2\beta^{-1}-\beta}{q^2-1}+{\rm id}_{V^{\otimes 2}}.$

Thus, by [O2, Corollary 2.3] the relations $ \gamma\wr x_{{\bf i} {\bf j}}=
x_{{\bf i} {\bf j}}\wr \gamma$ are redundant in this case. The reader may check that under these circumstances our bialgebra $ A^{{\rm s}}_{R,q}(n)$ is identical to the matrix bialgebra of the usual FRT-construction $ F_{R}(n)/\left< \beta\wr X_{{\bf i} {\bf j}}-X_{{\bf i} {\bf j}}\wr \beta,\;\; {\bf i},{\bf j} \in I(n,2)\right>$ connected with the symplectic group for example denoted $ {\cal F}_{\beta}(M_n)$ in [CP, 7.3 c].

On the other hand, if $ q^2-1$ is not invertible we really need to add the relations $ \gamma\wr x_{{\bf i} {\bf j}}=
x_{{\bf i} {\bf j}}\wr \gamma$. For instance, it has been proved in [O2, Corollary 6.2] that, setting $ q=1$, the bialgebra $ A^{{\rm s}}_{R,q}(n)$ is the coordinate ring of the symplectic monoid scheme $ {\rm SpM}_{n}(R)$ which is defined by

$\displaystyle {{\rm SpM}_{n}(R)}$$\displaystyle \mbox{\index{${{\rm SpM}_{n}(R)}$}}$$\displaystyle :=
\{ A \in {\rm M}_{n}(R)\vert\;\exists \;\; d(A)\in {R},\;
A^tJA=AJA^t=d(A)J\}.$

Here, $ J$ is the Gram-matrix of the canonical skew bilinear form, that is $ J=(J_{ij})_{i,j \in \underline{n}}$ where $ J_{ij}:=\epsilon_i\delta_{ij'}$. The regular function $ {d}$$ :{\rm SpM}_{n}(R) \rightarrow {R}$ is called the coefficient of dilation (cf. [Dt]). On the other hand, in this case the bialgebra of the usual FRT-construction equals $ A_{R}(n)=R[x_{1 1}, x_{1 2}, \ldots , x_{n n}]$, the commutative polynomial ring in the $ x_{i j}$, which is just the coordinate ring of the monoid scheme $ {\rm M}_{n}(R)$ of $ n \times n$-matrices. Consequently the bialgebra of the usual FRT-construction contains $ (q^2-1)$-torsion elements considered over the ground ring $ R={\mathbb{Z}}\,[q,q^{-1}]$ of integer Laurent polynomials in $ q$.

Let us write down a couple of consequent relations holding in $ A^{{\rm s}}_{R,q}(n)$. For this purpose the algebraic span of the $ V^{\otimes r}$-endomorphisms

$\displaystyle {\beta_i}$$\displaystyle \mbox{\index{${\beta_i}$}}$$\displaystyle := {\rm id}_{V^{\otimes i-1}} \otimes \beta
\otimes{\rm id}_{V^{\otimes r-i-1}}\;\;$ and $\displaystyle \;\;
{\gamma_i}$$\displaystyle \mbox{\index{${\gamma_i}$}}$$\displaystyle :={\rm id}_{V^{\otimes i-1}} \otimes \gamma
\otimes{\rm id}_{V^{\otimes r-i-1}}\;\; i=1, \ldots , r-1
$

in $ {\rm End}_{R}{(V^{\otimes r})}$ will be denoted by $ {{\cal A}_r}$ (for all $ r>1$). According to [O2, section 1, 5] in $ A^{{\rm s}}_{R,q}(n,r)$ the following relations hold for all $ r>1$:

$\displaystyle \mu \wr x_{{\bf i} {\bf j}} = x_{{\bf i} {\bf j}} \wr \mu \; \;$    for all $\displaystyle \mu \in {\cal A}_r, \;
 {\bf i},{\bf j} \in I(n,r).$ (5)

The reader should also note that by [O2, Lemma 2.2] all elements of $ {\cal A}_r$ must be morphisms of $ A^{{\rm s}}_{R,q}(n,r)$-comodules.


next up previous index
Next: Quantum Symplectic Bideterminants Up: symp Previous: Introduction   Index
Sebastian Oehms 2004-08-13