next up previous index
Next: Details to the Proof Up: Appendix: Technical Details Previous: Details to the Proof   Index


Details to the Proof of 11.3

We have to verrify the third equation listed in the proof. Let us first find suitable expressions for $ \beta(c_i)$ and $ \beta(d_i)$.

\begin{displaymath}
\begin{array}{rcl}
\beta(c_i) & = & q^i\beta( v_{i'}v_{i})...
...= & -y^{-i} c_i+
(y-1)y^{-i}\sum_{k=1}^{i-1}c_k
\end{array}
\end{displaymath}

We obtain $ \beta(y^{-i}c_i-y^{-1}d_i-(y^{-1}-1)\sum_{j=i+1}^md_j)=$

\begin{displaymath}
\begin{array}{rcl}
& - & d_i+y^{-i}(y-1)c_i+(y-1)(\sum_{k=...
... -y^{-j}c_j + y^{-j}(y-1) \sum_{k=1}^{j-1} c_k )
\end{array}
\end{displaymath}

Let us focus attention to the summand displayed in the last line:

\begin{displaymath}
\begin{array}{rcl}
\sum_{j=i+1}^{m}( -y^{-j}c_j + y^{-j}(...
... (y-1) \sum_{j=i+1}^m\sum_{k=1}^{j-1} y^{-j}c_k
\end{array}
\end{displaymath}

The second summand in this expression can be transformed in the following way:

\begin{displaymath}
\begin{array}{rcl}
\sum_{j=i+1}^m\sum_{k=1}^{j-1} y^{-j}c_...
..._k +
\sum_{k=i}^{m-1}(\sum_{j=k+1}^m y^{-j})c_k
\end{array}
\end{displaymath}

Thus:

\begin{displaymath}
\begin{array}{rcl}
(y-1)\sum_{j=i+1}^m\sum_{k=1}^{j-1} y^{...
...m}\sum_{k=1}^{m} c_k +y^{-i}\sum_{k=i}^{i-1} c_k
\end{array}
\end{displaymath}

In order to get the last line you have to add $ y^{-m}c_m
-y^{-m}c_m$. Substituting this result into the above expression yields $ \beta(y^{-i}c_i-y^{-1}d_i-(y^{-1}-1)\sum_{j=i+1}^md_j)=$

\begin{displaymath}
\begin{array}{rcl}
& - & d_i+y^{-i+1}c_i-y^{-i}c_i+(y-1)\...
...\sum_{k=1}^{i-1} c_k -
\sum_{k=i}^{m}y^{-k}c_k)
\end{array}
\end{displaymath}

Now we see that almost all summands in this expression cancel each other an we end up with

\begin{displaymath}
\begin{array}{rcl}
\beta(y^{-i}c_i-y^{-1}d_i-(y^{-1}-1)\su...
...
& = & y^{-i+1}c_i-d_i +(y-1)\sum_{j=i+1}^md_j.
\end{array}
\end{displaymath}



Sebastian Oehms 2004-08-13