next up previous index
Next: Bibliography Up: Appendix: Technical Details Previous: Details to the Proof   Index


Details to the Proof of 13.1

We prove a more general statement concerning elements $ D_{a,m\backslash l}$ defined similar to the elements $ D_{a,l}$ of section 14. For the set of subsets $ K \subseteq \underline{m}\backslash \underline{l-1}$ which have $ a$ elements we will write $ P({lm},{a})$. We set

$\displaystyle {D_{a,lm}}$$\displaystyle \mbox{\index{${D_{a,lm}}$}}$$\displaystyle :=\sum_{K\in P({lm},{a})} d_K. $

The more general statement of 13.1 reads:

Let $ a, l\in \underline{m}$. If $ \underline{lm}:=\underline{m}\backslash \underline{l-1}=L\cup M$ is a partition of $ \underline{lm}$ into disjoint subsets $ L$ and $ M$ then to each $ K \in P({lm},{a})$ there is an integer $ s(K,L,l)$ such that

$\displaystyle D_{a,lm}=\sum_{K \in P({lm},{a})}
y^{s(K,L,l)}c_{K\cap L}d_{K\cap M}. $

We will prove this by induction on $ m-l$. If $ m=l$ and $ a>1$ then $ D_{a,mm}=0$ and there is no $ K \in P({mm},{a})$. If $ a=1$ we have $ D_{1, mm}=d_m$ and $ K=\{m\}$. Thus $ s(K, \emptyset, m)=1, s(K,\{m\}, m)=0$ leads to a solution.

For the induction step we first consider the case $ l\in M$ and calculate

$\displaystyle D_{a,lm}=$ $\displaystyle d_l D_{a-1,(l+1)m} + D_{a, (l+1)m}$    
$\displaystyle =$ $\displaystyle d_l\sum_{K \in P({(l+1)m},{a-1})}y^{s(K,L,l+1)}
 c_{K\cap L}d_{K\cap M}+\sum_{K \in P({(l+1)m},{a})}y^{s(K,L,l+1)}
 c_{K\cap L}d_{K\cap M}$    
$\displaystyle =$ $\displaystyle \sum_{K \in P({lm},{a}), l \in K}y^{s(K\backslash \{l\},L,l+1)}
 ...
...\sum_{K \in P({lm},{a}), l \not \in K}
 y^{s(K,L,l+1)}
 c_{K\cap L}d_{K\cap M},$    

Setting $ s(K,L,l):=s(K\backslash \{l\},L,l+1)$ leads to a solution. If $ l \in L$ we apply relation (14) of the exterior algebra to obtain

$\displaystyle D_{a,lm}=$ $\displaystyle d_l D_{a-1,(l+1)m} + D_{a, (l+1)m}$    
$\displaystyle =$ $\displaystyle y^{1-l}c_l D_{a-1,(l+1)m} + (y-1)D_{1,(l+1)m}D_{a-1,(l+1)m} + D_{a, (l+1)m}$    

Now, in a similar way as in the proof of Lemma 14.1 we see that $ D_{1,(l+1)m}D_{a-1,(l+1)m}= \{a\}_{y}D_{a,(l+1)m}$ where $ {\{k\}_{y}}$$ :=1+y+y^{2}+\ldots +y^{k-1}\in R$. Since $ (y-1)\{a\}_{y} +1=y^a$ we obtain $ D_{a,lm}= y^{1-l}c_l D_{a-1,(l+1)m} +
y^{a}D_{a, (l+1)m}$. Thus, setting $ s(K,L,l):=1-l+s(K\backslash \{l\},L\backslash \{l\},l+1)$ if $ l\in K$ and $ s(K,L,l):=a+s(K,L\backslash \{l\},l+1)$ elsewise leads to a solution.

It remains to check that $ s(K,L,1)=v(K,L)$ if $ K\subseteq M$. More generally we prove that

$\displaystyle s(K,L,l)=(1-l)a + v(K,\underline{m} \backslash M) $

by induction on $ m-l$ again. If $ l=m$ we must have $ K=\{m\}=M$ or $ K=\emptyset$. In both cases both sides of the equation equal zero. For the induction step let us first consider the case $ l\in K$. By the above calculation this gives

$\displaystyle s(K,L,l) = s(K\backslash \{l\},L,l+1) = (1-(l+1))(a-1) +
v(K\backslash \{l\}, \underline{m}\backslash M \cup \{l\} ) $

Since $ v(K\backslash \{l\}, \underline{m}\backslash M \cup \{l\} ) = v(K, \underline{m}\backslash M ) + a
-l$ the assertion follows in the first case. Next we consider $ l\in M\backslash K$. Here we have

$\displaystyle s(K,L,l) = s(K,L,l+1) = (1-(l+1))a + v(K, \underline{m}\backslash M \cup \{l\}) $

and the assertion follows since $ v(K, \underline{m}\backslash M \cup \{l\} ) = v(K, \underline{m}\backslash M ) + a$. Finally we have to consider $ l \in L$. From the calculation above we get

$\displaystyle s(K,L,l) =a+s(K,L\backslash \{l\},l+1)= a + (1-(l+1))a + v(K, \underline{m}\backslash M ) $

which directly gives the result.


next up previous index
Next: Bibliography Up: Appendix: Technical Details Previous: Details to the Proof   Index
Sebastian Oehms 2004-08-13