next up previous index
Next: Proof of Proposition 12.2 Up: symp Previous: Proof of Proposition 8.3   Index

Proof of Proposition 12.1

For convenience, in in the following sections we abbreviate $ y=q^2$ and denote multiplication in $ {\bigwedge}_{R,q}(n)$ by juxtaposition instead of $ \wedge$. Furthermore, to sets $ K, L \subseteq \underline{m}$ we associate integers

$\displaystyle {v(K,L)}$$\displaystyle \mbox{\index{${v(K,L)}$}}$$\displaystyle :=\vert\{(k,l)\in K\times L \vert\; k>l\}\vert.$

Lemma 13.1   Let $ a\in \underline{m}$. If $ \underline{m}=L\cup M$ is a partition of $ \underline{m}$ into disjoint subsets $ L$ and $ M$ then to each $ K \in P({m},{a})$ there is an integer $ s(K,L)$ such that

$\displaystyle D_a=\sum_{K \in P({m},{a})}y^{s(K,L)}c_{K\cap L}d_{K\cap M}. $

If $ K\subseteq M$, the integer $ s(K,L)$ equals $ v(K, L)$.

SKETCH OF PROOF: In order to prove this, one has to use a more general statement in which the set $ \underline{m}$ is substituted by $ \{l, l+1, \ldots ,
m\}$ for some $ l\in \underline{m}$. After this, the results can be proved straightforwardly using induction on $ m-l$ and the relations (14) and (15) of the exterior algebra. For the details we refer to appendix 18.3. $ \Box$

To a set $ I\in P({n},{r})$ we associate the followng subsets of $ \underline{m}$:

$\displaystyle {I^-}$$\displaystyle \mbox{\index{${I^-}$}}$$\displaystyle :=I\cap \underline{m}, \;\; {I^+}$$\displaystyle \mbox{\index{${I^+}$}}$$\displaystyle :=\{ i\in \underline{m}\vert\; i' \in I\}\;\;$ and $\displaystyle \;\; {I^0}$$\displaystyle \mbox{\index{${I^0}$}}$$\displaystyle :=I^-\cap I^+. $

Lemma 13.2   Let $ I\in P({n},{r})$ be such that $ I^0=\emptyset$ and $ J \subseteq \underline{m}$. Set $ s =\vert J\vert$ and $ T:=\underline{m} \backslash (I^-\cup I^+)$. If $ J\subseteq T$ and $ a\in \underline{m}$ is such that $ s<a$ then we have

$\displaystyle v_{I}d_JD_{a-s}=v_{I}
\sum_{S \in P({m},{a}), J \subseteq S \subseteq T}y^{v(S\backslash J,I^+\cup J)}d_S.$

PROOF: We apply Lemma 13.1 to $ L:=I^+\cup J$ and $ M:=\underline{m}\backslash L$. Since $ J\subseteq T$ there is an invertible element $ b \in R$ such that $ v_{I}d_J=b d_Jv_{I}$ by (13). We claim that $ v_{I}d_Jc_{K\cap L}d_{K\cap M}$ vanishes for each $ K\in P({m},{a-s})$ that is not contained in $ T\backslash J$. If $ K \cap J \neq \emptyset$ then $ d_Jc_{K\cap L}=0$. If $ K \cap I^+ \neq \emptyset$ and $ K \cap J = \emptyset$ then $ v_{I}d_Jc_{K\cap L}=v_{I}c_{K\cap L}d_J=0$. Finally if $ K \cap I^- \neq \emptyset$ and $ K \cap J = \emptyset$ then $ v_{I}d_Jc_{K\cap L}d_{K\cap M}=v_{I}d_{K\cap M} d_J c_{K\cap L}=0$. Thus the expression is nonzero only if $ K\subseteq T \backslash J$. A set $ K\subseteq T \backslash J$ is obviously contained in $ M$, so by the second part of the Lemma we have $ s(K,L)=v(K, L)=v(K,I^+\cup J)$. Thus, setting $ S=J\cup K$ the assertion follows. $ \Box$

Lemma 13.3   Let $ M\subseteq K \subseteq \underline{m}$ be fixed. Then

$\displaystyle \sum_{L\subseteq K\backslash M} (-1)^{\vert L\vert}y^{v(K,L)}=
\left\{\begin{array}{ll}
1 & K=M \\
0 & K \neq M\end{array} \right. $

PROOF: Clearly the sum is $ 1$ if $ K=M$ since $ v(K, \emptyset)=0$. For $ K\neq M$ we show by induction on $ n:=\vert K\vert> 0$ that the sum is zero. Starting with the case $ n=1$ we have $ M=\emptyset$ and $ \sum_{L\subseteq K} (-1)^{\vert L\vert}y^{v(K,L)}=
y^{v(K, \emptyset)}-y^{v(K,K)}=1-1=0$. For the induction step, let $ n > 1, x \in K$ be minimal and set $ \widehat K:=K\backslash x$. If $ x \not\in M$ we calculate

$\displaystyle \sum_{L\subseteq K\backslash M} (-1)^{\vert L\vert}y^{v(K,L)}=
\...
...{L\subseteq \widehat K\backslash M} (-1)^{\vert L\vert+1}y^{v(K,L\cup \{x\})}. $

Since $ x$ is minimal, $ v(K,L)=v(\widehat K, L)$ and $ v(K, L\cup\{x\})=
v(\widehat K,L)+n-1$ if $ L\subseteq \widehat K\backslash M$. Now, we may apply the induction hypothesis to $ \widehat K$ which results in

$\displaystyle \sum_{L\subseteq K\backslash M} (-1)^{\vert L\vert}y^{v(K,L)}=(1-...
..._{L\subseteq \widehat K\backslash M} (-1)^{\vert L\vert}y^{v(\widehat K, L)}=0.$

In the case $ x \in M$, we write $ \widehat M:=M\backslash \{x\}$. Similarly, we calculate

$\displaystyle \sum_{L\subseteq K\backslash M} (-1)^{\vert L\vert}y^{v(K,L)}=
\...
...seteq \widehat K\backslash \widehat M} (-1)^{\vert L\vert}y^{v(\widehat K,L)}, $

where the right hand side is zero by the induction hypothesis. $ \Box$

Lemma 13.4   Let $ I\in P({n},{r})$ with $ r>m$ and set $ a=\vert I^0\vert$, $ \widehat I:=I\backslash \{i, i'\vert\; i \in I^0\}$ and $ T:=\underline{m} \backslash (I^+ \cup I^-)$. Then there is an invertible $ a_I\in R$ such that the following equation holds:

$\displaystyle v_{\widehat I}\sum_{J\subseteq T} (-1)^{\vert J\vert}y^{v(J,(\widehat I^)+\cup J )}
d_JD_{a-\vert J\vert} = a_Iv_{I}. $

PROOF: Let $ \widehat T=T \cup I^0=\underline{m}\backslash ((\widehat I)^+\cup(\widehat I)^-)$ and observe that $ (\widehat I)^+=I^+\backslash I^0$, $ (\widehat I)^0=\emptyset$, $ (\widehat I)^+\cap J=\emptyset$ and that $ T\cap I^0=\emptyset$. Because $ r>m$, we must have $ a\geq 1$. On the other hand $ 2a+\vert\widehat I\vert=r>m$ implies $ a>m-\vert\widehat I\vert-\vert I^0\vert=\vert T\vert\geq \vert J\vert$ for a set $ J$ as in the sum. Therefore we may apply Lemma 13.2:

$\displaystyle v_{\widehat I}\sum_{J\subseteq T} (-1)^{\vert J\vert}y^{v(J,(\widehat I)^+\cup J)}
 d_JD_{a-\vert J\vert}$ $\displaystyle =v_{\widehat I}\sum_{J\subseteq T} (-1)^{\vert J\vert}y^{v(J,(\wi...
...J \subset S \subseteq \widehat T}
 y^{v(S\backslash J,(\widehat I)^+\cup J)}d_S$    
  $\displaystyle =
 v_{\widehat I}\sum_{J\subseteq S \subseteq \widehat T, J\cap I^0=\emptyset}
 (-1)^{\vert J\vert}y^{v(S,J)+ v(S,(\widehat I)^+)}d_S$    
  $\displaystyle =
 v_{\widehat I}\sum_{S \subseteq \widehat T}
 y^{v(S,(\widehat I)^+)}d_S\sum_{J\subseteq S\backslash I^0}
 (-1)^{\vert J\vert}y^{v(S,J)}.$    

But by Lemma 13.3, the last term equals $ y^{v(I^0,\widehat I^+)}v_{\widehat I}d_{I^0}$. Using relation (13) of the exterior algebra, this can be transformed into $ v_{I}$ up to some invertible mutiple $ a_I$. $ \Box$

We are now able to prove Proposition 12.1 by induction on the Lie rank $ m$. In the case where $ m=1$ both sets of $ P({2},{1})=\{\{1\},\{2\}\}$ are reverse symplectic. In $ P({2},{2})$ there is just one set namely $ I=\{1,2\}$, for which we have $ v_{I}=-qd_1=-qD_1\in N$. Thus there is nothing to prove here.

For the induction step we embed $ {\bigwedge}_{R, q}(n-2)$ into $ {\bigwedge}_{R,q}(n)$ sending $ v_{i}$ to $ v_{i+1}$. It is easy to check that this indeed leads to an embedding of algebras. Using the induction hypothesis we may treat the case where $ I \subseteq \underline{n}\backslash \{1,n\}$ without much effort. Some caution is needed only concerning the difference between the two ideals $ N$ of $ {\bigwedge}_{R, q}(n-2)$ and $ {\bigwedge}_{R,q}(n)$. Denote them by $ N(n-2)$ and $ N(n)$. A single element $ u \in N(n-2)$ can be written

$\displaystyle u = \sum_{\{1,n\}\subseteq L \subseteq \underline{n}} a_{\widehat I L}v_{L}$    mod $\displaystyle N(n)
$

where the basis elements $ v_{L}$ all are smaller than $ v_{I}$, that is $ f({\bf l})<f({\bf i})$ for the corresponding multi-indices. If $ I\cap \{1,n\}\neq \emptyset$ we may apply the induction hypothesis to the set $ \widehat I:=I\backslash \{1,n\}$ in case $ \widehat I$ is non reverse symplectic too:

$\displaystyle v_{\widehat I}\equiv
\sum_{\widehat J\subseteq \underline{n}\bac...
...eq L\subseteq \underline{n}}a_{\widehat IL}v_{L} \;\;
\mbox{ mod }\;\; N(n). $

Again, the second sum compensate for the difference between the two ideals $ N(n-2)$ and $ N(n)$. Multiplying this congruence by $ v_{1}$ from the left (respectively by $ v_{n}$ from the right, respectively by both from both sides) yields the assertion because the elements $ v_{L}$ vanish, and $ f({\bf\widehat
j})<f({\bf\widehat i})$ implies $ f({\bf j})<f({\bf i})$, where $ {\bf j}$ is the multi-index attached to the set $ J=\widehat J\cup
(I\backslash \widehat I)$.

It remains to prove the assertion in the case where $ \widehat I$ is reverse symplectic. Here we need the preparations of this section. By the reverse symplectic condition applied to tableaux of shape $ \omega_r$ we have $ \sum_{i=j}^m\lambda_i\leq
m-j+1$ for all $ j>1$, where $ (\lambda_1, \ldots , \lambda_m)=f({\bf i})$. Because $ I$ itself is non reverse symplectic we must have $ r=\vert I\vert=\sum_{i=1}^m\lambda_i>m$. According to Lemma 13.4 we conclude $ v_{I} \in N$. But this implies the assertion of Proposition 12.1 in the remaining case too.


next up previous index
Next: Proof of Proposition 12.2 Up: symp Previous: Proof of Proposition 8.3   Index
Sebastian Oehms 2004-08-13