next up previous index
Next: The Symplectic -Schur algebra Up: symp Previous: Quantum Symplectic Bideterminants   Index


Quantum Coefficient of Dilation

In the definition of the symplectic monoid $ {\rm SpM}_{n}(R)$ we have introduced a function called the coefficient of dilation. This is neccessarily a regular function in the sense of algebraic geometry. Now we will define its quantization which will be called the quantum coefficient of dilation. Using notation (2) we see that

$\displaystyle -q^{-\rho_k-\rho_l}\epsilon_k\epsilon_l\;\;\gamma\wr
x_{(k,k') ...
...')}=
q^{-\rho_l}\epsilon_l \sum_{i=1}^nq^{\rho_i}\epsilon_i
x_{i l}x_{i' l'}.$

is independent of $ k$, whereas

$\displaystyle -q^{-\rho_k-\rho_l}\epsilon_k\epsilon_l \;\;
x_{(k,k') (l,l')}\w...
... =
-q^{-\rho_k}\epsilon_k \sum_{i=1}^nq^{\rho_i}\epsilon_i
x_{k i}x_{k' i'}
$

is independent of $ l$. But, as $ \gamma\wr
x_{(k,k') (l,l')}= x_{(k,k') (l,l')}\wr \gamma$ according to (5), both expressions coincide and consequently are independent of both $ k$ and $ l$. Thus, the element

$\displaystyle {d_q}$$\displaystyle \mbox{\index{${d_q}$}}$$\displaystyle := -q^{-\rho_k-\rho_l}\epsilon_k\epsilon_l\;\; \gamma\wr 
 x_{(k,...
...l')}= -q^{-\rho_k-\rho_l}
 \epsilon_k\epsilon_l \;\;x_{(k,k') (l,l')}\wr \gamma$ (7)

is well defined in $ A^{{\rm s}}_{R,q}(n)$. In fact it is a grouplike element of this bialgebra. More precisely it is the coefficient function of the one dimensional subcomodule of $ V\otimes V$ that is spanned by the tensor

$\displaystyle {{J}^*}$$\displaystyle \mbox{\index{${{J}^*}$}}$$\displaystyle :=\sum_{i=1}^n\epsilon_iq^{\rho_i}v_{i}\otimes v_{i'}
\in V\otimes V.$

To see this, note that $ {J}^*=\gamma(-q^{-\rho_l}\epsilon_lv_{l}\otimes v_{l'})$ for each $ l$ and that $ \gamma$ is a morphism of $ A^{{\rm s}}_{R,q}(n)$-comodules. One calculates

$\displaystyle \tau_{2}({J}^* )=
\tau_{2}\circ\gamma(-q^{-\rho_l}\epsilon_lv_{l...
...n(v_{i} \otimes v_{k})\otimes (-q^{-\rho_l}\epsilon_l\;\;
x_{(i,k) (l,l')}))= $

$\displaystyle {J}^*\otimes q^{-\rho_l}\epsilon_l\sum_{k=1}^n
q^{\rho_k}\epsilon_k \;x_{(k,k') (l,l')} = {J}^* \otimes d_q.$

Remark 4.1   The element $ {J}^*$ coincides with $ \zeta$ from [Ha1, section 6] if $ q$ is substituted by $ q^{-1}$. Therefore $ d_q$ is identical to the grouplike element called quad there. By [Ha1, Corollary 6.3] it is central.

Lemma 4.2   Let $ j, k, l \in \underline{n}$. Then we have

$\displaystyle \sum_{i=1}^j q^{-i}x_{k i}x_{l i'}\wr \beta =
\sum_{i=1}^j q^{i-2j}x_{k i'}x_{l i}.
$

PROOF: We calculate

\begin{displaymath}
\begin{array}{rcl}
\sum_{i=1}^{j} q^{-i}x_{k i} x_{l i'}\w...
...q h\geq i \geq j}
y^{-i}q^hx_{k h'} x_{l h} \\
\end{array}
\end{displaymath}

Since $ \sum_{1 \geq h\geq i \geq j}
y^{-i}q^hx_{k h'} x_{l h} =
\sum_{h=1}^j (\sum_{i=h}^j y^{-i})q^h x_{k h'} x_{l h}$ and $ (y-1)\sum_{i=h}^{j}y^{-i} =y^{-h+1}-y^{-j}$ we obtain

$\displaystyle (y-1)\sum_{1 \geq h\geq i \geq j}
y^{-i}q^hx_{k h'} x_{l h} = \sum_{i=1}^j q^i(y^{-i+1}-y^{-j})
x_{k i'}x_{l i}
$

Substituting this into the first equation of the proof leads to our claim. $ \Box$

For $ l=m$ we deduce the connection formula

Proposition 4.3   The quantum symplectic $ 2\times 2$-determinants are related to the coefficient of dilation by

$\displaystyle \sum_{i=1}^mq^{-i}T^{\omega_2}_q((k,l):(i,i'))=
\left\{\begin{ar...
...{-k}d_q& k=l' \mbox{ and } k \leq m, \\
0 & k\neq l'.
\end{array} \right.
$

PROOF: By definition of bideterminants and the above lemma we have

\begin{displaymath}
\begin{array}{rcl}
\sum_{i=1}^mq^{-i}T^{\omega_2}_q((k,l):...
...um_{i=1}^n \epsilon_i q^{\rho_i}x_{k i}x_{l i'}
\end{array}
\end{displaymath}

On the other hand we see

\begin{displaymath}
\begin{array}{rcl}
x_{k m}x_{l m'}\wr \gamma & = &
-\sum_...
...um_{i=1}^n \epsilon_i q^{\rho_i} x_{k i}x_{l i'}
\end{array}
\end{displaymath}

Putting these things together we obtain

$\displaystyle \sum_{i=1}^mq^{-i}T^{\omega_2}_q((k,l):(i,i')) = -q^{-m-2}
x_{k m}x_{l m'}\wr \gamma
$

Since $ x_{k m}x_{l m'}\wr \gamma = \gamma\wr x_{k m}x_{l m'}$ it follows that the expression vanishes if $ l \neq k'$. In the case $ l=k'$ we deduce from (7) the equation $ -q^{-m-2}x_{k m}x_{l m'}\wr \gamma =
q^{-k}d_q$ which finishes the proof. $ \Box$


next up previous index
Next: The Symplectic -Schur algebra Up: symp Previous: Quantum Symplectic Bideterminants   Index
Sebastian Oehms 2004-08-13