next up previous
Next: Examples Up: No Title Previous: Residual Series

Application to Cellular Algebras

 

We now restrict A to a special type of R-algebra which have been described using a couple of axioms by Graham and Lehrer ([GL]) and which are called cellular algebras. Instead of listing these axioms we rather explain the properties of A and tex2html_wrap_inline2297 which will be needed in the sequel. For more details we refer to [GL].

  1. There is a finite poset tex2html_wrap_inline2215 and for each tex2html_wrap_inline3045 a pair tex2html_wrap_inline3047 of A-modules called the standard and the costandard module of type tex2html_wrap_inline2213. Both are free and isomorphic to each other as R-modules and there is an A-module homomorphism


    displaymath3007

  2. For each commutative ring S being an R-algebra, tex2html_wrap_inline2605 is again a cellular algebra and the functor tex2html_wrap_inline3063 carries tex2html_wrap_inline3065 to the corresponding objects and morphisms tex2html_wrap_inline3067 with respect to tex2html_wrap_inline2643.
  3. For each field K being an R-algebra, the image tex2html_wrap_inline2231 of tex2html_wrap_inline3077 is an irreducible tex2html_wrap_inline2233-module as long as tex2html_wrap_inline3077 is not the zero map. All irreducible tex2html_wrap_inline2233-modules occur in this way. Furthermore, if tex2html_wrap_inline3085 and tex2html_wrap_inline3087, then the (nesessarily absolutely) irreducible modules tex2html_wrap_inline2231 and tex2html_wrap_inline2241 are non isomorphic.
  4. For a field K and tex2html_wrap_inline3095 such that tex2html_wrap_inline3097, let tex2html_wrap_inline2235 be the multiplictiy of tex2html_wrap_inline2241 as a composition factor of tex2html_wrap_inline2237. Then tex2html_wrap_inline3105 and tex2html_wrap_inline3107 implies tex2html_wrap_inline3109.

Let us compare these statements with corresponding definitions and results in [GL]. We assume that A is finitely generated as an R-module. This implies the finiteness of tex2html_wrap_inline2215. Now, as we consider right modules, our tex2html_wrap_inline2209 corresponds to tex2html_wrap_inline3119 in [GL]. The costandard modules are defined as their duals


displaymath3008

where the action of A is given by tex2html_wrap_inline3123 for all tex2html_wrap_inline3125 and tex2html_wrap_inline3127. Here * denotes the anti involution on A which exists by one of the axioms. Now, on tex2html_wrap_inline3133 there is a symmetric bilinear form tex2html_wrap_inline3135 with tex2html_wrap_inline3137. Since tex2html_wrap_inline3133 coincides with tex2html_wrap_inline3119 as an R-module we have a bilinear form on tex2html_wrap_inline2209 with tex2html_wrap_inline3147 (since the operation on tex2html_wrap_inline3119 is just the left action on tex2html_wrap_inline3133 pulled to the right via *). This in turn leads to the A-module homomorphism tex2html_wrap_inline3157 being defined by tex2html_wrap_inline3159.

The compatibility with the functor tex2html_wrap_inline3161 is obvious (compare (1.8) in [GL]). The statements concerning the tex2html_wrap_inline2231 follow from (3.2) and (3.4) of [GL]. For this purpose, note that the radical of tex2html_wrap_inline3135 is nothing but the kernel of tex2html_wrap_inline3157 where again the action of A is pulled from left to right via *. Finally, the statement on the decomposition numbers tex2html_wrap_inline2235 follows from (3.6) of [GL].

If K is a field and all tex2html_wrap_inline3077 are isomorphisms, then according to Theorem (3.8) of [GL] tex2html_wrap_inline2233 is semisimple. For the field Q of fractions on an integral domain R this is by flatness the case iff tex2html_wrap_inline3157 is injective for all tex2html_wrap_inline3045. If this is the case call A generic semisimple. Even for such an A it is possible that tex2html_wrap_inline3193 for some field K. For a prime p we will throughout denote by F:=[p]=R/(p) the corresponding residue class field for short. We set


displaymath3009

According to (3.10) in [GL] for a field K, the algebra tex2html_wrap_inline2233 is quasi-hereditary if tex2html_wrap_inline3205 for all tex2html_wrap_inline3045. Let us call A integrally quasi-hereditary if tex2html_wrap_inline3211 for all primes tex2html_wrap_inline2441.

We now define a global version of tex2html_wrap_inline2231 in tex2html_wrap_inline2501. Throughout, we will not distinguish between right A-modules and their residue classes in tex2html_wrap_inline3221 or tex2html_wrap_inline2941 any more. Let tex2html_wrap_inline3225 be the cokernel of tex2html_wrap_inline3157. We set


displaymath3010

Note that tex2html_wrap_inline3229 is not the residue class of some A-module in general. But if K is a field and an R-algebra, then the map tex2html_wrap_inline2765 of chapter 3 carries this element to the residue class of tex2html_wrap_inline2231 in the Grothendieck group tex2html_wrap_inline3241.

Let tex2html_wrap_inline3243 be the tex2html_wrap_inline2393-linear span of all tex2html_wrap_inline3229 in tex2html_wrap_inline2941. We wish to show that for a generic semisimple cellular algebra A over a pid you always have tex2html_wrap_inline3253. From now on, let us assume that R is a pid. We call an element tex2html_wrap_inline3257 positive if in the unique expression with respect to the tex2html_wrap_inline2257-basis tex2html_wrap_inline2433 of tex2html_wrap_inline2393 all integer coefficients are nonnegative. Write tex2html_wrap_inline3265 for the submonoid of all these elements and tex2html_wrap_inline3267 for the tex2html_wrap_inline3265 span of tex2html_wrap_inline3271 in tex2html_wrap_inline3243. Note that tex2html_wrap_inline3275 is zero, iff [p]x=0 for all primes p, whereas tex2html_wrap_inline3281 is zero, iff the residual series tex2html_wrap_inline3283 in tex2html_wrap_inline2393 is zero for all primes p.


 lem438

PROOF:Since the R-annihilator of tex2html_wrap_inline3305 is contained in the R-annihilator of xa for all tex2html_wrap_inline3311, it follows that the R-module decomposition of M into primary components is in fact a decomposition of A-modules. Thus we may assume that M is primary as an R-module. Let p be the corresponding prime. Now for all primes tex2html_wrap_inline2953 the residual series tex2html_wrap_inline3327 is constant zero. Let us consider tex2html_wrap_inline3329. Recall that F:=R/(p) and tex2html_wrap_inline3333 means tex2html_wrap_inline3335, that is tex2html_wrap_inline3337. Since these simple tex2html_wrap_inline2751-modules form a basis of the Grothendieck group of tex2html_wrap_inline2751, there are unique nonnegative integers tex2html_wrap_inline3343 such that


displaymath3011

For all tex2html_wrap_inline2443 there is an tex2html_wrap_inline2751-epimorphism


displaymath3012

given by multiplication by p. This shows that tex2html_wrap_inline3351 is nonnegative. There is a smallest number j, such that tex2html_wrap_inline3355 for all tex2html_wrap_inline3357, since M is a torsion module. We set


displaymath3013

This is obviously contained in tex2html_wrap_inline3267. By Lemma 4.1 it remains to show that tex2html_wrap_inline3363 for all primes q. For tex2html_wrap_inline2953 both series are identically zero. For q=p by multiplicativity of tex2html_wrap_inline3371, it is enough to show


displaymath3014

for all i. This can be calculated with help of (3). tex2html_wrap_inline2725


 cor476

PROOF:This is immediate from the definition of tex2html_wrap_inline3229 and the Lemma 5.1 since under the above assumption tex2html_wrap_inline3225 is an R-torsion module. tex2html_wrap_inline2725


 lem488

PROOF:By Lemma 4.1 we have to show that the residual series of M and N coincide for all primes p. The epimorphism from tex2html_wrap_inline3417 to tex2html_wrap_inline3419 considered in the proof of Lemma 5.1 and being induced by multiplication by p must be an isomorphism in the case of a free module. Therefore, the residual series of M and N are constant. Thus the proof is finished as soon as we have shown [p]M=[p]N for all primes p. Since the sum M+N in V again is a full lattice,we can reduce to the case tex2html_wrap_inline3435. Now let tex2html_wrap_inline3437 be the localisation of R at the prime ideal (p) and tex2html_wrap_inline3441, tex2html_wrap_inline3443 the corresponding tex2html_wrap_inline3437 lattices in V. Multiplication by [p] - the residue class in tex2html_wrap_inline3451 of the field tex2html_wrap_inline3453 - is defined in tex2html_wrap_inline3455 as well and leads to the same elements [p]M'=[p]M resp. [p]N'=[p]N in the Grothendieck group tex2html_wrap_inline3461 (see Propositions 3.1 and 3.2). Finishing the proof now is standard (cf. [CR], 16.16). tex2html_wrap_inline2725

Applying Lemma 5.3 to the image of tex2html_wrap_inline3157 and tex2html_wrap_inline2211 as lattices in tex2html_wrap_inline3469, one immediately gets


 cor507


theo514

PROOF:By Lemma 5.1 we can reduce to the case where M is free as an R-module, since an arbitrary M can be written tex2html_wrap_inline3499 with tex2html_wrap_inline3501 free and tex2html_wrap_inline3503 an R-torsion module (even in tex2html_wrap_inline2501). Let Q be the field of fractions on R. Since A is generic semisimple, tex2html_wrap_inline3515 decomposes into a direct sum of simple modules tex2html_wrap_inline3517. Let tex2html_wrap_inline3519 be the direct sum of the corresponding tex2html_wrap_inline2211. Both M and N are full lattices in tex2html_wrap_inline3527 so that it follows M=N in tex2html_wrap_inline2941 by Lemma 5.3. Since tex2html_wrap_inline3533 by Corollary 5.2 the proof is finished. tex2html_wrap_inline2725

Throughout, let us now assume that A is generic semisimple. Note that in this case the set tex2html_wrap_inline3539 defined above is finite for all tex2html_wrap_inline2213. Set tex2html_wrap_inline3543 where tex2html_wrap_inline3545 is the largest number such that tex2html_wrap_inline3547.


 prop533

PROOF:To show existence, there are elements tex2html_wrap_inline3567 such that tex2html_wrap_inline3569 by Lemma 5.1. Furthermore, the proof of this lemma shows that tex2html_wrap_inline3571 for all tex2html_wrap_inline3573. If tex2html_wrap_inline3333 we multiply the equation tex2html_wrap_inline3577 by [p]. Because tex2html_wrap_inline3581 and tex2html_wrap_inline3583, we get tex2html_wrap_inline3585 thus tex2html_wrap_inline3587. Because tex2html_wrap_inline3589, this in turn implies tex2html_wrap_inline3591 for all tex2html_wrap_inline2213. Setting tex2html_wrap_inline3595 and tex2html_wrap_inline3597 for tex2html_wrap_inline3085 we are finished since tex2html_wrap_inline3577 and obviously tex2html_wrap_inline3603.

For uniqueness, take tex2html_wrap_inline3605 to be a second set of such elements. Since tex2html_wrap_inline3607 by definition and for tex2html_wrap_inline3085 both elemens are in tex2html_wrap_inline3265, it is enough to show tex2html_wrap_inline3613 for all primes p. In the case tex2html_wrap_inline3573 this follows from condition (b). Using (b) and multiplying (c) by [p] we get from Proposition 3.2 tex2html_wrap_inline3621 for all tex2html_wrap_inline3623 where tex2html_wrap_inline3625 are the usual decomposition numbers for tex2html_wrap_inline2751. To this claim, note that tex2html_wrap_inline3629 in tex2html_wrap_inline3461 by Corollary 5.4 and Proposition 3.2. This completes the proof. tex2html_wrap_inline2725

For any field K you have tex2html_wrap_inline3637 where tex2html_wrap_inline3639 is the map induced by the base change to K (see chapter 3). Therefore, we call these elements the global decomposition numbers of A.


 prop628

PROOF:Since tex2html_wrap_inline3651 there must be a prime tex2html_wrap_inline2441 such that tex2html_wrap_inline3655. This implies tex2html_wrap_inline3657 for the residue class field F=R/(p). The corresponding known result for fields then implies the statement of the proposition. tex2html_wrap_inline2725

For any total order on tex2html_wrap_inline2215 refining the given partial order, the matrix tex2html_wrap_inline3665 is therefore upper triangular with respect to this total order. Setting tex2html_wrap_inline3667 and tex2html_wrap_inline3669 for tex2html_wrap_inline3085 one gets a unitriangular (and so invertible) matrix tex2html_wrap_inline3673. Note that condition (c) of proposition 5.6 holds for the tex2html_wrap_inline3675, too. We call D the global decomposition matrix and E the regular decomposition matrix. The fact that E is invertible implies that tex2html_wrap_inline2941 is generated as an tex2html_wrap_inline2393 module by the costandard modules tex2html_wrap_inline2211, too.

Let us determine the relations among the tex2html_wrap_inline3229 resp. the tex2html_wrap_inline2211. Denote by tex2html_wrap_inline3693 the canonical basis elements of the free tex2html_wrap_inline2393-module tex2html_wrap_inline3697. We define two epimorphisms tex2html_wrap_inline3699 by tex2html_wrap_inline3701 and tex2html_wrap_inline3703. If tex2html_wrap_inline3705 is the automorphism of tex2html_wrap_inline3697 given by the regular decomposition matrix E, i.e. tex2html_wrap_inline3711, we clearly have tex2html_wrap_inline3713. Let tex2html_wrap_inline3715 and tex2html_wrap_inline3717 be the kernels of tex2html_wrap_inline3719 and tex2html_wrap_inline3721 respectively. We only need to determine tex2html_wrap_inline3715 since tex2html_wrap_inline3725.

Let tex2html_wrap_inline2441 be a prime such that tex2html_wrap_inline3729. Since for all tex2html_wrap_inline3623 we have tex2html_wrap_inline3733 the costandard modules tex2html_wrap_inline3735 form a basis of the Grothendieck group tex2html_wrap_inline3461. Therefore there are unique integers tex2html_wrap_inline3739 for all tex2html_wrap_inline3741 and tex2html_wrap_inline3623 such that


displaymath3015

For each pair tex2html_wrap_inline3745 with tex2html_wrap_inline3741 we set


displaymath3016

and let tex2html_wrap_inline3749 be the tex2html_wrap_inline2257-linear span of all elements tex2html_wrap_inline3753 for such pairs tex2html_wrap_inline3745 and positive integers tex2html_wrap_inline2443.


 prop696

PROOF:Since the residual series of the costandard modules are constant we have for a prime q


displaymath3017

Now, tex2html_wrap_inline3763 whenever tex2html_wrap_inline2953 by the formulas (1) and (3). Multiplying the bracket term by [p] gives zero by construction of the numbers tex2html_wrap_inline3739. Therefore tex2html_wrap_inline3771 for all primes q, thus tex2html_wrap_inline3775.

Now let tex2html_wrap_inline3777 be in tex2html_wrap_inline3715 with tex2html_wrap_inline3781. We first claim that there exists tex2html_wrap_inline2943 such that tex2html_wrap_inline3785 for all tex2html_wrap_inline3787 and primes tex2html_wrap_inline2441. For if there is tex2html_wrap_inline3791 and a prime tex2html_wrap_inline2441 such that for all tex2html_wrap_inline2943 there exists tex2html_wrap_inline3797 giving tex2html_wrap_inline3799, it follows that the coefficient of 1 in the unique presentation of tex2html_wrap_inline3803 with respect to the tex2html_wrap_inline2257-basis tex2html_wrap_inline2433 of tex2html_wrap_inline2393 is nonzero. Now, if Q is the field of fractions on R and tex2html_wrap_inline3815 the corresponding map of chapter 3 we must have tex2html_wrap_inline3817. But this implies


displaymath3018

since all costandard modules form a basis of tex2html_wrap_inline3819. This contradict tex2html_wrap_inline3821 in tex2html_wrap_inline2941.

We now proceed by induction on such a number i. For i=0 we must have x=0 since then the residual series of all tex2html_wrap_inline3831 are zero for all primes. Assume i>0. There are uniquely determined numbers tex2html_wrap_inline3835 such that tex2html_wrap_inline3837. Set


displaymath3019

Then tex2html_wrap_inline3839. Write tex2html_wrap_inline3841. By construction of y we have tex2html_wrap_inline3845 for all tex2html_wrap_inline3797 and all primes p. We claim tex2html_wrap_inline3851 for all primes p and tex2html_wrap_inline3045. If this is shown the induction hypothesis applies to z giving tex2html_wrap_inline3859 as required.

Keep p fixed and let tex2html_wrap_inline3741. The coefficient of tex2html_wrap_inline3693 in y is of the form tex2html_wrap_inline3869 with some tex2html_wrap_inline3871 being nonzero only for a finite number of primes q. Since tex2html_wrap_inline3875, it follows tex2html_wrap_inline3877 by definition of tex2html_wrap_inline3879. Making use of tex2html_wrap_inline3881 we calculate


displaymath3020

where in addition we used the fact that the residual series of tex2html_wrap_inline2211 is constant. Since tex2html_wrap_inline3885 is a basis of tex2html_wrap_inline3461 the coefficients tex2html_wrap_inline3889 must be zero for tex2html_wrap_inline3333 as well. tex2html_wrap_inline2725

Clearly tex2html_wrap_inline3895 iff A is integrally quasi-hereditary. Thus we have proved


 theo775

Examples of integrally quasi-hereditary generic semisimple cellular algebras are given by Schur algebras and generalizations of them.


next up previous
Next: Examples Up: No Title Previous: Residual Series

Sebastian Oehms
Wed Mar 8 15:35:55 MEZ 2000