next up previous index
Next: The Weak Straightening Algorithm Up: symp Previous: The Quantum Symplectic Straightening   Index

Arithmetic of Bideterminants

The calculus of bideterminants is needed inside $ {\cal K}=A^{{\rm sh}}_{R,q}(n,r)$. Unless otherwise stated the rules hold in $ A^{{\rm s}}_{R,q}(n,r)$ too. Recall the definition of $ \kappa_{\lambda}$ from section 3.

Lemma 9.1   Let $ \lambda \in
\Lambda(p, r)$ be a composition and $ y=q^2$. Then to each $ i<r$ such that the simple transposition $ s_i=(i,i+1)$ is contained in the standard Young-subgroup $ {\cal S}_{\lambda}$, there are endomorphisms $ \mu_{\lambda,i}, \mu'_{\lambda,i}\in {\rm End}_{R}{(V^{\otimes r})}$ satisfying

$\displaystyle \kappa_{\lambda}=({\rm id}_{V^{\otimes r}}-y^{-1}\beta_i)\mu_{\lambda ,i}=
\mu'_{\lambda,i}({\rm id}_{V^{\otimes r}}-y^{-1}\beta_i).$

PROOF: Let us first reduce to the case $ \lambda =\alpha_r=(r)$. Setting $ \kappa_r:=\kappa_{\alpha_r}$, $ k_s:=\lambda_1 + \ldots + \lambda_{s-1}$, $ \mu_{r,i}:=\mu_{\alpha_r,i}$, $ \mu'_{r,i}:=\mu'_{\alpha_r,i}$ and

$\displaystyle \kappa_{\lambda}^s:={\rm id}_{V^{\otimes k_s}}
\otimes \kappa_{\lambda_s}\otimes{\rm id}_{V^{\otimes r-\lambda_s-k_s}},$

we can extend the definition to arbitrary $ \lambda$ by using the formula $ \kappa_{\lambda}=\kappa_{\lambda}^1\kappa_{\lambda}^2\ldots
\kappa_{\lambda}^p$ in which the factors commute. Now, using standard reduced expressions for permutations $ w \in {\cal S}_{r}$ one easily verifies the following recursion rules for $ r>1$:

$\displaystyle \kappa_r=\kappa_{r-1}({\rm id}_{V^{\otimes r}}+
\sum_{l=1}^{r-1}(-y)^{l-r}\beta_{r-1}\beta_{r-2}
\ldots \beta_l)=$

$\displaystyle ({\rm id}_{V^{\otimes r}}+
\sum_{l=1}^{r-1}(-y)^{l-r}\beta_l\beta_{l+1}
\ldots \beta_{r-1})\kappa_{r-1}. $

We proceed by induction on $ r$, the case $ r=2$ being clear. The case $ i<r-1$ can be handled immediately with the help of the above recursion formula. If $ i=r-1$ we calculate

$\displaystyle \kappa_r = \kappa_{r-1}({\rm id}_{V^{\otimes r}}-y^{-1}\beta_{r-1...
...eta_{r-2})
\sum_{l=1}^{r-2}(-y)^{l-r}\beta_{r-1}\beta_{r-2}
\ldots \beta_l.
$

But by the braid relations we get

$\displaystyle ({\rm id}_{V^{\otimes r}}-y^{-1}\beta_{r-2})(-y)^{l-r}\beta_{r-1}...
...a_{r-1}\beta_{r-2}\ldots \beta_l({\rm id}_{V^{\otimes r}}-y^{-1}\beta_{r-1}),
$

yielding the right hand side factorization of $ \kappa_r$. The other formula is obtained similarly. $ \Box$

Corollary 9.2   Let $ {\bf j} \in I(n,r)$ be a multi-index possessing two identical neighbouring indices $ j_l=j_{l+1}$ and $ \lambda \in
\Lambda(p, r)$ such that the transposition $ s_l$ is contained in $ {\cal S}_{\lambda}$. Then $ t_q^{\lambda}({\bf i}:{\bf j})=t_q^{\lambda}({\bf j}:{\bf i})=0$ holds for all $ {\bf i} \in I(n,r)$.

PROOF: By assumption, $ v_{{\bf j}}$ lies in the kernel of $ ({\rm id}_{V^{\otimes r}}-y^{-1}\beta_l)$. Consequently the assertion concerning $ t_q^{\lambda}({\bf i}:{\bf j})$ follows immediately from Lemma 9.1 since $ t_q^{\lambda}({\bf i}:{\bf j})=
x_{{\bf i} {\bf j}}\wr \kappa_{\lambda}$. Using the matrix transposition map $ ^*$ introduced in section 8, the formula for exchanged multi-indices follows as well. $ \Box$

Next, we investigate the transition from $ A^{{\rm s}}_{R,q}(n)$ to its epimorphic image $ A^{{\rm sh}}_{R,q}(n)$. For this purpose denote by $ {{\cal G}_{r}}$ the ideal generated by $ G:=\gamma_1=\gamma\otimes
{\rm id}_{V^{\otimes r-2}}$ in the algebraic span $ {\cal A}_r$ of the endomorphisms $ \beta_i$ and $ \gamma_i$. By equation (1) the realtion $ \beta^2=(q^2-1)\beta + q^2{\rm id}_{V^{\otimes r}2}$ holds in $ {\cal A}_r/ {\cal G}_{r}$. By the braid relations $ \beta_i\beta_{i+1}\beta_i=\beta_{i+1}\beta_i\beta_{i+1}$ the relations $ \beta_i^2=(q^2-1)\beta_i + q^2{\rm id}_{V^{\otimes r}2}$ and $ \gamma_i = 0$ must hold in $ {\cal A}_r/ {\cal G}_{r}$ for all $ i$ as well. The Iwahori-Hecke algebra $ {{\cal H}_q(r)}$ of type $ A$ is defined on generators $ T_{s_i}$ for $ i \in \{1, \cdots, r-1\}$ by relations

\begin{displaymath}
\begin{array}{rll}
T_{s_i}T_{s_j} & = T_{s_j}T_{s_i} & \m...
...& = (q^2-1)T_{s_1} + q^2 & \mbox{ where } i < r.
\end{array}
\end{displaymath}

Therefore, there is an epimorphism from $ {\cal H}_q(r)$ to the quotient $ {\cal A}_r/ {\cal G}_{r}$ sending the generator $ T_{s_l}$ to $ \beta_l +{\cal G}_{r}$ (notation as in [DD]).

Lemma 9.3   Let $ A, B\in {\cal A}_r$ be endomorphisms of $ V^{\otimes r}$ such that $ A\equiv B$ modulo $ {\cal G}_{r}$. Then, the equation $ x_{{\bf i} {\bf j}}\wr A=x_{{\bf i} {\bf j}}\wr B$ holds in $ {\cal K}$.

PROOF: We have to show that $ x_{{\bf i} {\bf j}}\wr A=0$ for all $ A\in {\cal G}_{r}$. Let $ F,H\in {\cal A}_r$ be such that $ A=FGH$. From the defining equation of the quantum coefficient of dilation $ d_q$ from section 4 we have

$\displaystyle x_{{\bf i} {\bf j}}\wr G=
\left\{ \begin{array}{ll}
0 & j_1'\ne...
...}\ldots x_{i_r j_r} & j_1'=j_2 \mbox{ and } i_1'=i_2.\\
\end{array} \right.
$

This means $ x_{{\bf i} {\bf j}}\wr G=0$ in $ {\cal K}$ for all $ {\bf i},{\bf j}\in I(n,r)$. By (5) we have $ x_{{\bf i} {\bf j}}\wr F=F\wr x_{{\bf i} {\bf j}}$ and therefore,

$\displaystyle x_{{\bf i} {\bf j}}\wr FGH=\sum_{{\bf k},{\bf l},{\bf s} \in I(n,...
...\in I(n,r)}
f_{{\bf i}{\bf k}}(x_{{\bf k} {\bf s}}\wr G)h_{{\bf s}{\bf j}}= 0.$

where $ (f_{{\bf i}{\bf j}})_{{\bf i}, {\bf j} \in I(n,r)}$, $ (g_{{\bf i}{\bf j}})_{{\bf i}, {\bf j} \in I(n,r)}$ and $ (h_{{\bf i}{\bf j}})_{{\bf i}, {\bf j} \in I(n,r)}$ are the coefficient matrices of $ F, \; G$ and $ H$. $ \Box$

We extend the notation introduced in (2). Let $ \mu \in {\rm End}_{R}{(V^{\otimes r})}$ be an endomorphism of $ V^{\otimes r}$. Set

\begin{displaymath}\begin{array}{rl}
 t_q^{\lambda}({\bf i}:{\bf j})\wr \mbox{\i...
...})=(\mu\kappa_{\lambda})
 \wr x_{{\bf i} {\bf j}}.
 \end{array}\end{displaymath} (10)

Similar expressions are used with respect to the capital $ T$ notation for bideterminants.

Lemma 9.4   For all $ {\bf i},{\bf j}\in I(n,r)$ and $ w \in {\cal S}_{\lambda}$ the following equations hold in $ {\cal K}$;

$\displaystyle \beta (w)\wr t_q^{\lambda}({\bf i}:{\bf j})=
\beta (w)^{-1}\wr t...
...bf i}:{\bf j})\wr \beta (w)^{-1}
=t_q^{\lambda}({\bf i}:{\bf j})\wr \beta (w) $

PROOF: Modulo $ {\cal G}_{r}$ we have

$\displaystyle \beta (w)\kappa_{\lambda}=\beta (w)^{-1}\kappa_{\lambda}=
(-1)^{...
...kappa_{\lambda} =
\kappa_{\lambda} \beta (w)^{-1}=\kappa_{\lambda} \beta (w)
$

since the corresponding equations (where $ \beta (w)$ is replaced by $ T_w$) hold in the Iwahori-Hecke algebra $ {\cal H}_q(r)$. Thus the assertion follows from Lemma 9.3. $ \Box$

Let $ {{\cal J}}$ denote the ideal in the tensor algebra $ {\cal T}(V)=
\bigoplus_{r \in {\mathbb{N}}\,_0} V^{\otimes r}$ generated by the twofold invariant tensor $ {J}^*=\sum_{i=1}^n\epsilon_iq^{\rho_i}v_{i}\otimes v_{i'}
\in V\otimes V$ and let $ {{{\cal J}}_{r}}$$ :={\cal J}\cap V^{\otimes r}$ be its $ r$-th homogeneous summand.

Lemma 9.5   Let $ U$ be the $ R$-linear span of all elements $ \gamma_l(v_{{\bf i}})$ where $ 1 \leq l<r$ and $ {\bf i} \in I(n,r)$. Then $ U={{\cal J}}_{r}$.

PROOF: Since $ \gamma(v_{k}v_{k'})=-\epsilon_kq^{\rho_k}{J}^*$ and $ \gamma(v_{k}v_{l})
=0$ for all $ k, l \in \underline{r}$ with $ k \neq l'$ by section 4 it follows that $ U$ is contained in $ {{\cal J}}_{r}$. The verification of the opposite inclusion can be reduced to consider elements of the form $ v_{{\bf i}}{J}^*v_{{\bf j}}$ with $ {\bf i} \in I(n,l-1), {\bf j} \in I(n,r-l-1)$ for some $ 1 \leq l<r$. But such an element can be written as $ -\epsilon_kq^{-\rho_k}\gamma_{l}(v_{{\bf i}}v_{k}v_{k'}v_{{\bf j}})$ for some $ k\in \underline{r}$. Thus the assertion follows. $ \Box$

Lemma 9.6   Let $ a_{{\bf j}} \in R$ be such that $ \sum_{{\bf j}\in I(n,r)}a_{{\bf j}}v_{{\bf j}} \in {{\cal J}}_{r}$. Then, for all $ {\bf i} \in I(n,r)$ and all compositions $ \lambda$ of $ r$ we have in $ {\cal K}$

$\displaystyle \sum_{{\bf j}\in I(n,r)} a_{{\bf j}}x_{{\bf i} {\bf j}}=0, \;\;$    and $\displaystyle \;\;
\sum_{{\bf j}\in I(n,r)} a_{{\bf j}}t_q^{\lambda}({\bf i}:{\bf j})=0. $

PROOF: First, note that the second equation follows from the first one by definition of bideterminants. By the above lemma we can reduce to the case $ \sum_{{\bf j}\in I(n,r)}a_{{\bf j}}v_{{\bf j}} =\gamma_l(v_{{\bf k}})$ where $ {\bf k} \in I(n,r), 1 \leq l < r$ and $ a_{{\bf j}}=(\gamma_l)_{{\bf j}{\bf k}}$. Thus we get $ \sum_{{\bf j}\in I(n,r)} a_{{\bf j}}x_{{\bf i} {\bf j}}=
x_{{\bf i} {\bf k}}\wr \gamma_l=0.$ $ \Box$

Next, we give a quantum symplectic version of Laplace duality. The corresponding classical result can be found in [Ma, 2.5.1], for instance.

Proposition 9.7 (Laplace Duality)   Let $ \lambda,\mu \in\Lambda(p, r)$ be compositions, $ Y$ a set of left coset representatives of $ {\cal S}_{\lambda}\cap {\cal S}_{\mu} $ in $ {\cal S}_{\lambda}$ and $ X$ a set of right coset representatives of $ {\cal S}_{\lambda}\cap {\cal S}_{\mu} $ in $ {\cal S}_{\mu} $, such that $ l(vw)=l(v)+l(w)$ and $ l(wu)=l(u)+l(w)$ holds for all $ v \in Y, u \in X$ and $ w \in {\cal S}_{\lambda}\cap {\cal S}_{\mu} $. Then for all $ {\bf i},{\bf j}\in I(n,r)$ the following equation holds:

$\displaystyle \sum_{u \in X}(-y)^{-l(u)}t_q^{\lambda}({\bf i}:{\bf j})\wr \beta (u)=
\sum_{v \in Y}(-y)^{-l(v)}\beta (v)\wr t_q^{\mu}({\bf i}:{\bf j}).
$

PROOF: Using the disjoint union

$\displaystyle Z:={\cal S}_{\lambda}{\cal S}_{\mu} =
\bigcup_{u\in X}{\cal S}_{\lambda}u=\bigcup_{v\in Y}v{\cal S}_{\mu} , $

and the fact $ \beta(w)\beta(u)=\beta(wu)$, $ \beta(v)\beta(w)=\beta(vw)$ which holds by length additivity we calculate

$\displaystyle \begin{array}{rl}
\sum_{u \in X}(-y)^{-l(u)}t_q^{\lambda}({\bf i...
...um_{v\in Y} (-y)^{-l(v)}\beta (v)\wr t_q^{\mu}({\bf i}:{\bf j}).
\end{array}
$

$ \Box$

The next result is needed for the transition from $ t$-bideterminants of compositions to $ T$-bideterminants of partitions.

Lemma 9.8   Let $ \lambda \in
\Lambda(p, r)$ be a composition and $ {\bf i},{\bf j}\in I(n,r)$. Then the bideterminant $ t_q^{\lambda}({\bf i}:{\bf j})$ can be written as a linear combination of bideterminants $ T^{\lambda '}_q({\bf k}:{\bf l})$.

PROOF: First, there is a permutation $ \pi \in {\cal S}_{p}$, such that $ \bar{\lambda}=(\lambda_{\pi(1)}, \ldots , \lambda_{\pi(p)})\in \Lambda^+(p, r)$ is a partition. This $ \bar{\lambda}$ is uniquely determined by $ \lambda$ (but $ \pi$ only under the restriction to be of minimal length). Clearly the parabolic subgroups $ {\cal S}_{\lambda}$ and $ {\cal S}_{\bar{\lambda}}$ in $ {\cal S}_{r}$ are conjugate to each other. Thus, there is an element $ v \in {\cal S}_{r}$ such that $ v{\cal S}_{\lambda}={\cal S}_{\bar{\lambda}}v$. Furthermore, it is known from the theory of parabolic subgroups that in the left coset $ v{\cal S}_{\lambda}$ and in the right coset $ {\cal S}_{\bar{\lambda}}v$ there are unique representatives $ w$ (resp. $ \bar w$) of minimal length. Since we have $ l(wu)=l(w)+l(u)$ for all $ u \in {\cal S}_{\lambda}$ and $ l(u\bar w)=l(u)+
l(\bar w)$ for all $ u \in {\cal S}_{\bar{\lambda}}$, we have $ \beta(w)\kappa_{\lambda}=\kappa_{\bar{\lambda}}\beta(\bar w)$. By the definition of bideterminants ( $ t_q^{\lambda}({\bf i}:{\bf j}):=\kappa_{\lambda}x_{{\bf i} {\bf j}}$), the relations (5) holding inside $ A^{{\rm s}}_{R,q}(n,r)$ and the calculus for the symbol $ \wr $ given in (3) we obtain

$\displaystyle \beta(w)\wr t_q^{\lambda}({\bf i}:{\bf j})=
t_q^{\bar{\lambda}}(...
...j})\wr \beta(\bar w)=
T^{\bar{\lambda}'}_q({\bf i}:{\bf j})\wr \beta(\bar w). $

Since $ \bar{\lambda}'=\lambda '$ this results in

$\displaystyle t_q^{\lambda}({\bf i}:{\bf j})=
\beta(w)^{-1}\wr T^{\lambda '}_q...
... i}{\bf k}}
T^{\lambda '}_q({\bf k}:{\bf l}) \beta (\bar w)_{{\bf l}{\bf j}}. $

$ \Box$

Next, we introduce a calculus for our bideterminants bringing our special order $ \lhd$ on $ I(n,r)$ into the picture. First, some new notation has to be explained. The sum of two multi-indices $ {\bf i} \in I(n,r)$ and $ {\bf j}\in I(n,s)$ is defined by juxtaposition, that is

$\displaystyle {{\bf i}+{\bf j}}$$\displaystyle \mbox{\index{${{\bf i}+{\bf j}}$}}$$\displaystyle :=(i_1,\ldots , i_r, j_1, \ldots , j_s) \;\in \;I(n,r+s). $

Note that the map $ f:I(n,r)\rightarrow {\mathbb{N}}\,_0^m$ occurring in Theorem 8.3 is additive in the sense $ f({\bf i}+{\bf j})=
f({\bf i})+f({\bf j})$. This implies

$\displaystyle f({\bf i} +{\bf j})< f({\bf i}+{\bf k})\;\;$ and $\displaystyle \;\;
 f({\bf j} +{\bf i})<f({\bf k}+{\bf i})\;\;$ if $\displaystyle \;\;
 f({\bf j})<f({\bf k})$ (11)

with respect to the lexicographic order $ <$ on $ {\mathbb{N}}\,_0^m$. To a multi-index $ {\bf i} \in I(n,r)$ we consider the following $ R$-spans in $ V^{\otimes r}$:

$\displaystyle {W_{{\bf i}}}$$\displaystyle \mbox{\index{${W_{{\bf i}}}$}}$$\displaystyle :=
\left< v_{{\bf j}}\vert\;{\bf j} \in I(n,r) , \; f({\bf j})<
f({\bf i})\right> \; \;$ and $\displaystyle \;\;
{\overline W_{{\bf i}}}$$\displaystyle \mbox{\index{${\overline W_{{\bf i}}}$}}$$\displaystyle :=
\left< v_{{\bf j}}\vert\;{\bf j} \in I(n,r) , \; f({\bf j}) \leq
f({\bf i})\right>.
$

Furthermore, we set

$\displaystyle h_{ij}:= \left\{ \begin{array}{ll}
q^{-1} & \mbox{ if } j\neq i,...
...ox{ where } i'>m, \\
q^{-2} & \mbox{ if } j=i'\leq m,
\end{array} \right.
$

and denote the simple transpositions by $ s_l=(l,l+1)$, as before. The following lemma is the key concerning calculations with bideterminants. Again we set $ y=q^2$.

Lemma 9.9   For all $ {\bf i} \in I(n,r)$ and $ l \in \underline{r}$ the following formulas hold in $ V^{\otimes r}$ modulo the $ R$-module $ W_{{\bf i}}$:

$\displaystyle \beta_l(v_{{\bf i}})\equiv \left\{ \begin{array}{ll}
yh_{i_{l+1}...
...1}i_{l}}v_{{\bf i}s_l} & \mbox{\rm if } i_l \leq i_{l+1},
\end{array} \right. $

$\displaystyle \beta_l^{-1}(v_{{\bf i}})\equiv \left\{ \begin{array}{ll}
h_{i_{...
...{l+1}i_{l}}v_{{\bf i}s_l} & \mbox{\rm if } i_l > i_{l+1}.
\end{array} \right. $

PROOF: The congruence relation for $ \beta_l^{-1}$ follows from the one for $ \beta_l$ because $ y\beta^{-1}=\beta+(y-1)(\gamma-{\rm id}_{V^{\otimes 2}})$ by (1). Therefore, it is enough to prove the first assertion.

First, consider the case $ i_l > i_{l+1}$. If $ i_l\neq i_{l+1}'$, the asserted congruence relation is also an equation, as can be seen directly from the definition of $ \beta$. Turning to the case $ i_l=i_{l+1}'=:j\leq m$, we split $ {\bf i}$ into three summands

$\displaystyle {\bf i}^1=(i_1, \ldots , i_{l-1}), \; \;
{\bf i}^2=(j',j), \; \;
{\bf i}^3=(i_{l+1}, \ldots , i_r) .$

To $ k \in \underline{n}$ we set $ {\bf i}(k):={\bf i}^1 + (k,k') + {\bf i}^3$ and calculate

$\displaystyle \beta_l(v_{{\bf i}}) = v_{{\bf i}s_l} + (y-1)v_{{\bf i}}
-(y-1)\sum_{k>j}q^{\rho_k-\rho_j}\epsilon_k
v_{{\bf i}(k)} .$

Since $ (y-1)\sum_{k=1}^nq^{\rho_k-\rho_j}\epsilon_k\epsilon_j
v_{{\bf i}(k)} =(y-1)\gamma_l(v_{{\bf i}})$ we obtain the equation

$\displaystyle \beta_l(v_{{\bf i}}) =
v_{{\bf i}s_l} + (y-1)({\rm id}_{V^{\oti...
...\gamma_l)(v_{{\bf i}})
+(y-1)\sum_{k\leq j}q^{\rho_k-\rho_j}
v_{{\bf i}(k)} .$

But $ {\bf i}(j)={\bf i}s_l$ and

$\displaystyle f({\bf i}(k))=f({\bf i}^1) + f((k,k')) +
f({\bf i}^3) < f({\bf i}^1) + f((j',j)) +
f({\bf i}^3) =f({\bf i}(j'))=f({\bf i})$

for all $ k < j$ by (11), yielding the asserted congruence modulo $ W_{{\bf i}}$. If $ i_l<i_{l+1}$ the interesting case is $ i_{l+1}'=i_l=:j\leq m$. Here the assertion immediately follows from the calculation

$\displaystyle \beta_l(v_{{\bf i}}) = v_{{\bf i}s_l}
-(y-1)\sum_{k>j'}q^{\rho_k+\rho_j}
v_{{\bf i}(k)} ,$

because $ f({\bf i}(k))<f({\bf i})$ for all $ k>j'$. $ \Box$

Remark 9.10   By Lemma 9.5 the above lemma implies that $ \overline W_{{\bf i}}+{{\cal J}}_{r}$ is invariant under $ {\cal A}_r$. But, $ W_{{\bf i}}=\sum_{f({\bf j})<f({\bf i})}\overline W_{{\bf j}}$ and thus, $ W_{{\bf i}}+{{\cal J}}_{r}$ must be invariant as well.

Corollary 9.11   Let $ {\bf j} \in I(n,r)$ and $ l \in \underline{r}$. Then to each $ {\bf k}\in I(n,r)$ satisfying $ f({\bf k}) < f({\bf j})$ there is $ a_{{\bf j}{\bf k}}(s_l)$ in $ R$ (possibly zero) such that the following equations hold in $ {\cal K}$ for all $ {\bf i} \in I(n,r)$:

$\displaystyle T^{\lambda}_q({\bf i}:{\bf j})\wr \beta_l^{-1}=
h_{j_{l+1}j_l}T^...
...f k})<f({\bf j})}
a_{{\bf j}{\bf k}}(s_l)T^{\lambda}_q({\bf i}:{\bf k})
\;\;$    if $\displaystyle j_l > j_{l+1},$

$\displaystyle T^{\lambda}_q({\bf i}:{\bf j})\wr \beta_l=
yh_{j_{l+1}j_l}T^{\la...
...f k})<f({\bf j})}
a_{{\bf j}{\bf k}}(s_l)T^{\lambda}_q({\bf i}:{\bf k})
\;\;$    if $\displaystyle j_l \leq j_{l+1}.$

PROOF: Note that $ (\beta_l^{-1})_{{\bf k} {\bf j}}$ is the coefficient of $ v_{{\bf k}}$ in the expression $ \beta_l^{-1}(v_{{\bf j}})$. By definition of bideterminants and the conventions (10) about $ \wr $, the result follows immediately from the lemma. $ \Box$

Corollary 9.12   Let $ {\bf j} \in I(n,r)$ and $ w\in {\cal S}_{\lambda'}$. Then there is an invertible element $ a_{{\bf j}}(w) \in R$ and to each $ {\bf k}\in I(n,r)$ satisfying $ f({\bf k}) < f({\bf j})$ another element $ a_{{\bf j}{\bf k}}(w)$ in $ R$ such that the following equations hold in $ {\cal K}$ for all $ {\bf i} \in I(n,r)$:

$\displaystyle T^{\lambda}_q({\bf i}:{\bf j})=
a_{{\bf j}}(w)T^{\lambda}_q({\bf...
...f({\bf k})<f({\bf j})}
a_{{\bf j}{\bf k}}(w)T^{\lambda}_q({\bf i}:{\bf k}).
$

PROOF: We use induction on the length of $ w$. If this is zero there is nothing to prove. If not, we write $ w=w's_l$ where $ w', s_l \in {\cal S}_{\lambda'}$ and $ l(w')=l(w)-1$. By the induction hypothesis we have

$\displaystyle T^{\lambda}_q({\bf i}:{\bf j})=
a_{{\bf j}}(w')T^{\lambda}_q({\b...
...({\bf k})<f({\bf j})} a_{{\bf j}{\bf k}}(w')
T^{\lambda}_q({\bf i}:{\bf k}).
$

But by Lemma 9.4 we have $ T^{\lambda}_q({\bf i}:{\bf j}w')=
-T^{\lambda}_q({\bf i}:{\bf j}w')\wr \beta_l^{-1}$ as well as $ T^{\lambda}_q({\bf i}:{\bf j}w')=
-T^{\lambda}_q({\bf i}:{\bf j}w')\wr \beta_l$. Thus, the assertion follows from the preceding corollary and the fact that $ f({\bf j})=f({\bf j}w')$. $ \Box$

Lemma 9.13   Let $ {\bf i} \in I(n,r)$ satisfy $ i_1\leq i_2 \leq \ldots \leq i_r$ and let $ w \in {\cal S}_{r}$ be arbitrary. Then the following congruence relation holds in $ V^{\otimes r}$ modulo the $ R$-submodule $ W'_{{\bf i}}=W_{{\bf i}}+{{\cal J}}_{r}$:

$\displaystyle \beta(w^{-1})(v_{{\bf i}})\equiv y^{l(w)}h_{{\bf i}}(w)v_{{\bf i}w} .$

Here we have set $ h_{{\bf i}}(w):=\prod h_{i_{w(k)}i_{w(j)}}$, where the product runs over all pairs $ 1\leq j < k \leq r$ such that $ w(j)>w(k)$.

PROOF: We use induction on $ r$, the case $ r=1$ being trivial. For $ r>1$ we embed $ {\cal S}_{r-1}$ as the parabolic subgroup of $ {\cal S}_{r}$ generated by $ s_1, \ldots ,s_{r-2}$, which fix $ r$. If $ w\in {\cal S}_{r-1}$ there is nothing to prove by the induction hypothesis. Otherwise, we write $ w=w's$ where $ w'\in {\cal S}_{r-1}$ and $ s:=s_{r-1}
s_{r-2}\ldots s_{j+1}s_j$ for an appropriate $ j < r$, thus $ l(w)=l(w')+r-j$. By the induction hypothesis, Lemma 9.9 and Remark 9.10 we calculate

$\displaystyle \begin{array}{rl}
\beta(w^{-1})(v_{{\bf i}}) & \equiv
\beta(s^{...
...)}} v_{{\bf i}w's} \\
& =
y^{l(w)}h_{{\bf i}}(w)v_{{\bf i}w}.
\end{array}
$

$ \Box$

Corollary 9.14   Let $ {\bf j} \in I(n,r)$ satisfy $ j_l \leq j_{l+1}
\leq \ldots \leq j_{k-1} \leq j_k$ for some $ 1\leq l < k \leq r$ and $ w \in {\cal S}_{r}$ satisfy $ w(i)=i$ for $ 1\leq i \leq l$ or $ k< i \leq r$. Then, to each $ {\bf k}\in I(n,r)$ satisfying $ f({\bf k}) < f({\bf j})$ there is an element $ a'_{{\bf j}{\bf k}}(w)$ in $ R$ such that the following equations hold in $ {\cal K}$ for all $ {\bf i} \in I(n,r)$:

$\displaystyle T^{\lambda}_q({\bf i}:{\bf j})\wr \beta(w)=
y^{l(w)}h_{{\bf j}}(...
...{f({\bf k})<f({\bf j})}
a'_{{\bf j}{\bf k}}(w)T^{\lambda}_q({\bf i}:{\bf k}).$

PROOF: As for the proof of Corollary 9.11, this follows easily from the preceding lemma, Lemma [*] and the definition of bideterminants. $ \Box$


next up previous index
Next: The Weak Straightening Algorithm Up: symp Previous: The Quantum Symplectic Straightening   Index
Sebastian Oehms 2004-08-13